Kaiyee Chin - Academia.edu (original) (raw)

Papers by Kaiyee Chin

Research paper thumbnail of Nitroxyl (HNO), The Novel Redox Sibling of NO, Enhances Left Ventricular (LV) Function and Coronary Flow via Thiol-Sensitive and cGMP-Dependent Actions: Impact of Diabetes

Heart, Lung and Circulation, 2012

Research paper thumbnail of Soluble guanylyl cyclase mediates concomitant coronary vasodilator and positive inotropic actions of the HNO donor Angeli's salt in the intact rat heart

BMC Pharmacology and Toxicology, 2013

Research paper thumbnail of Investigation of the mechanism (s) of flavonol-induced cardioprotection in rat isolated hearts (652.7)

Research paper thumbnail of The concomitant coronary vasodilator and positive inotropic actions of the nitroxyl donor Angeli's salt in the intact rat heart: contribution of soluble guanylyl cyclase-dependent and -independent mechanisms

British Journal of Pharmacology, 2014

The NO redox sibling nitroxyl (HNO) elicits soluble guanylyl cyclase (sGC)-dependent vasodilatati... more The NO redox sibling nitroxyl (HNO) elicits soluble guanylyl cyclase (sGC)-dependent vasodilatation. HNO has high reactivity with thiols, which is attributed with HNO-enhanced left ventricular (LV) function. Here, we tested the hypothesis that the concomitant vasodilatation and inotropic actions induced by a HNO donor, Angeli's salt (sodium trioxodinitrate), were sGC-dependent and sGC-independent respectively. Haemodynamic responses to Angeli's salt (10 pmol-10 μmol), alone and in the presence of scavengers of HNO (L-cysteine, 4 mM) or of NO [hydroxocobalamin (HXC), 100 μM] or a selective inhibitor of sGC [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), 10 μM], a CGRP receptor antagonist (CGRP8-37 , 0.1 μM) or a blocker of voltage-dependent potassium channels [4-aminopyridine (4-AP), 1 mM] were determined in isolated hearts from male rats. Angeli's salt elicited concomitant, dose-dependent increases in coronary flow and LV systolic and diastolic function. Both L-cysteine and ODQ shifted (but did not abolish) the dose-response curve of each of these effects to the right, implying contributions from HNO and sGC in both the vasodilator and inotropic actions. In contrast, neither HXC, CGRP8-37 nor 4-AP affected these actions. Both vasodilator and inotropic actions of the HNO donor Angeli's salt were mediated in part by sGC-dependent mechanisms, representing the first evidence that sGC contributes to the inotropic and lusitropic action of HNO in the intact heart. Thus, HNO acutely enhances LV contraction and relaxation, while concomitantly unloading the heart, potentially beneficial actions in failing hearts.

Research paper thumbnail of Nitroxyl (HNO), The Novel Redox Sibling of NO, Enhances Left Ventricular (LV) Function and Coronary Flow via Thiol-Sensitive and cGMP-Dependent Actions: Impact of Diabetes

Heart, Lung and Circulation, 2012

Research paper thumbnail of Soluble guanylyl cyclase mediates concomitant coronary vasodilator and positive inotropic actions of the HNO donor Angeli's salt in the intact rat heart

BMC Pharmacology and Toxicology, 2013

Research paper thumbnail of Investigation of the mechanism (s) of flavonol-induced cardioprotection in rat isolated hearts (652.7)

Research paper thumbnail of The concomitant coronary vasodilator and positive inotropic actions of the nitroxyl donor Angeli's salt in the intact rat heart: contribution of soluble guanylyl cyclase-dependent and -independent mechanisms

British Journal of Pharmacology, 2014

The NO redox sibling nitroxyl (HNO) elicits soluble guanylyl cyclase (sGC)-dependent vasodilatati... more The NO redox sibling nitroxyl (HNO) elicits soluble guanylyl cyclase (sGC)-dependent vasodilatation. HNO has high reactivity with thiols, which is attributed with HNO-enhanced left ventricular (LV) function. Here, we tested the hypothesis that the concomitant vasodilatation and inotropic actions induced by a HNO donor, Angeli's salt (sodium trioxodinitrate), were sGC-dependent and sGC-independent respectively. Haemodynamic responses to Angeli's salt (10 pmol-10 μmol), alone and in the presence of scavengers of HNO (L-cysteine, 4 mM) or of NO [hydroxocobalamin (HXC), 100 μM] or a selective inhibitor of sGC [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), 10 μM], a CGRP receptor antagonist (CGRP8-37 , 0.1 μM) or a blocker of voltage-dependent potassium channels [4-aminopyridine (4-AP), 1 mM] were determined in isolated hearts from male rats. Angeli's salt elicited concomitant, dose-dependent increases in coronary flow and LV systolic and diastolic function. Both L-cysteine and ODQ shifted (but did not abolish) the dose-response curve of each of these effects to the right, implying contributions from HNO and sGC in both the vasodilator and inotropic actions. In contrast, neither HXC, CGRP8-37 nor 4-AP affected these actions. Both vasodilator and inotropic actions of the HNO donor Angeli's salt were mediated in part by sGC-dependent mechanisms, representing the first evidence that sGC contributes to the inotropic and lusitropic action of HNO in the intact heart. Thus, HNO acutely enhances LV contraction and relaxation, while concomitantly unloading the heart, potentially beneficial actions in failing hearts.