Katia Cortese - Academia.edu (original) (raw)

Papers by Katia Cortese

Research paper thumbnail of Simulated Microgravity Effects on Human Adenocarcinoma Alveolar Epithelial Cells: Characterization of Morphological, Functional, and Epigenetic Parameters

International Journal of Molecular Sciences

Background: In space, the reduction or loss of the gravity vector greatly affects the interaction... more Background: In space, the reduction or loss of the gravity vector greatly affects the interaction between cells. Since the beginning of the space age, microgravity has been identified as an informative tool in biomedicine, including cancer research. The A549 cell line is a hypotriploid human alveolar basal epithelial cell line widely used as a model for lung adenocarcinoma. Microgravity has been reported to interfere with mitochondrial activity, energy metabolism, cell vitality and proliferation, chemosensitivity, invasion and morphology of cells and organelles in various biological systems. Concerning lung cancer, several studies have reported the ability of microgravity to modulate the carcinogenic and metastatic process. To investigate these processes, A549 cells were exposed to simulated microgravity (µG) for different time points. Methods: We performed cell cycle and proliferation assays, ultrastructural analysis of mitochondria architecture, as well as a global analysis of miR...

Research paper thumbnail of Imaging of Endocytic Trafficking and Extracellular Vesicles Released Under Neratinib Treatment in ERBB2+ Breast Cancer Cells

Journal of Histochemistry & Cytochemistry

Breast cancers (BCa) with ERBB2 amplification show rapid tumor growth, increased disease progress... more Breast cancers (BCa) with ERBB2 amplification show rapid tumor growth, increased disease progression, and lower survival rate. Deregulated intracellular trafficking and extracellular vesicle (EVs) release are mechanisms that support cancer progression and resistance to treatments. Neratinib (NE) is a Food and Drug Administration–approved pan-ERBB inhibitor employed for the treatment of ERBB2+ BCa that blocks signaling and causes survival inhibition. However, the effects of NE on ERBB2 internalization, its trafficking to multivesicular bodies (MVBs), and the release of EVs that originate from these organelles remain poorly studied. By confocal and electron microscopy, we observed that low nanomolar doses of NE induced a modest ERBB2 internalization along with an increase of clathrin-mediated endocytosis and of the CD63+ MVB compartment in SKBR-3 cells. Furthermore, we showed in the culture supernatant two distinct EV subsets, based on their size and ERBB2 positivity: small (30–100 nm...

Research paper thumbnail of Simulated Microgravity Effects on Human Adenocarcinoma Alveolar Epithelial Cells: Characterization of Morphological, Functional, and Epigenetic Parameters

International Journal of Molecular Sciences, 2021

Background: In space, the reduction or loss of the gravity vector greatly affects the interaction... more Background: In space, the reduction or loss of the gravity vector greatly affects the interaction between cells. Since the beginning of the space age, microgravity has been identified as an informative tool in biomedicine, including cancer research. The A549 cell line is a hypotriploid human alveolar basal epithelial cell line widely used as a model for lung adenocarcinoma. Microgravity has been reported to interfere with mitochondrial activity, energy metabolism, cell vitality and proliferation, chemosensitivity, invasion and morphology of cells and organelles in various biological systems. Concerning lung cancer, several studies have reported the ability of microgravity to modulate the carcinogenic and metastatic process. To investigate these processes, A549 cells were exposed to simulated microgravity (µG) for different time points. Methods: We performed cell cycle and proliferation assays, ultrastructural analysis of mitochondria architecture, as well as a global analysis of miR...

Research paper thumbnail of 1 ERBB 1 and ERBB 2 Positive Medullary Thyroid Carcinoma : 2 A Case Report 3 4

4 Michele Minuto, Emanuela Varaldo, Gianluca Marcocci, Amleto de Santanna, Ermanno 5 Ciccone, Kat... more 4 Michele Minuto, Emanuela Varaldo, Gianluca Marcocci, Amleto de Santanna, Ermanno 5 Ciccone, Katia Cortese* 6 7 1 DISC, Department of Surgical Sciences, University of Genoa, Largo R. Benzi, 8, Genoa, Italy; 8 Michele.Minuto@unige.it (MM); Emanuela.Varaldo@unige.it (EV); 9 gianlucamarcocci91@gmail.com (GM) 10 2 DIMES, Department of Experimental Medicine, University of Genoa, Via Antonio de Toni 14, 11 16132, Genoa, Italy; amletodesantanna@unige.it (ADS); cicc@unige.it (EC); cortesek@unige.it 12 (KC) 13

Research paper thumbnail of Comprehensive Profiling of Secretome Formulations from Fetal- and Perinatal Human Amniotic Fluid Stem Cells

International Journal of Molecular Sciences

We previously reported that c-KIT+ human amniotic-fluid derived stem cells obtained from leftover... more We previously reported that c-KIT+ human amniotic-fluid derived stem cells obtained from leftover samples of routine II trimester prenatal diagnosis (fetal hAFS) are endowed with regenerative paracrine potential driving pro-survival, anti-fibrotic and proliferative effects. hAFS may also be isolated from III trimester clinical waste samples during scheduled C-sections (perinatal hAFS), thus offering a more easily accessible alternative when compared to fetal hAFS. Nonetheless, little is known about the paracrine profile of perinatal hAFS. Here we provide a detailed characterization of the hAFS total secretome (i.e., the entirety of soluble paracrine factors released by cells in the conditioned medium, hAFS-CM) and the extracellular vesicles (hAFS-EVs) within it, from II trimester fetal- versus III trimester perinatal cells. Fetal- and perinatal hAFS were characterized and subject to hypoxic preconditioning to enhance their paracrine potential. hAFS-CM and hAFS-EV formulations were a...

Research paper thumbnail of Novel imaging techniques and biological methods for breast cancer evaluation: overview and update

Journal of Radiological Review

Research paper thumbnail of Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs)

Biomaterials

Mesenchymal stromal cells (MSCs) are characterized by a regulatory phenotype and respond promptly... more Mesenchymal stromal cells (MSCs) are characterized by a regulatory phenotype and respond promptly to the environmental signals modulating their secretory activity. An appropriate preconditioning may induce MSCs to release secretomes with an enhanced regenerative potential. However, it fails to take into account that secretomes are composed by both soluble factors and extracellular vesicles (EVs), whose functions could be altered differently by the preconditioning approach. Here we demonstrate that the MSC secretome is strongly modulated by the simultaneous stimulation with hypoxia and pro-inflammatory cytokines, used to mimic the harsh environment present at the site of injury. We observed that the environmental variations strongly influenced the angiogenic potential of the different secretome fractions. Upon inflammation, the pro-angiogenic capacity of the soluble component of the MSC secretome was strongly inhibited, regardless of the oxygen level, while the EV-encapsulated component was not significantly affected by the inflammatory stimuli. These effects were accompanied by the modulation of the secreted proteins. On one hand, inflammation-activated MSCs release proteins mainly involved in the interaction with innate immune cells and in tissue remodeling/repair; on the other hand, when MSCs are not exposed to an inflamed environment, they respond to the different oxygen levels modulating the expression of proteins involved in the angiogenic process. The cargo content (in terms of miRNAs) of the corresponding EV fractions was less sensitive to the influence of the external stimuli. Our findings suggest that the therapeutic efficacy of MSC-based therapies could be enhanced by selecting the appropriate preconditioning approach and carefully discriminating its effects on the different secretome components.

Research paper thumbnail of Synthesis, Photoisomerization, Antioxidant Activity, and Lipid-Lowering Effect of Ferulic Acid and Feruloyl Amides

Molecules

The Ugi four-component reaction employing naturally occurred ferulic acid (FA) is proposed as a c... more The Ugi four-component reaction employing naturally occurred ferulic acid (FA) is proposed as a convenient method to synthesize feruloyl tertiary amides. Applying this strategy, a peptoid-like derivative of ferulic acid (FEF77) containing 2 additional hydroxy-substituted aryl groups, has been synthesized. The influence of the configuration of the double bond of ferulic acid and feruloyl amide on the antioxidant activity has been investigated thanks to light-mediated isomerization studies. At the cellular level, both FA, trans and cis isomers of FEF77 were able to protect human endothelial cord vein (HECV) cells from the oxidative damage induced by exposure to hydrogen peroxide, as measured by cell viability and ROS production assays. Moreover, in steatotic FaO rat hepatoma cells, an in vitro model resembling non-alcoholic fatty liver disease (NAFLD), the molecules exhibited a lipid-lowering effect, which, along with the antioxidant properties, points to consider feruloyl amides for ...

Research paper thumbnail of The depolarization-evoked, Ca2+-dependent release of exosomes from mouse cortical nerve endings: new insights into synaptic transmission

Whether exosomes can be actively released from presynaptic nerve terminals is a matter of debate.... more Whether exosomes can be actively released from presynaptic nerve terminals is a matter of debate. To address the point, mouse cortical synaptosomes were incubated under basal and depolarizing (25 mM KCl-enriched medium) conditions, and extracellular vesicles were isolated from the synaptosomal supernatants to be characterized by dynamic light scattering, transmission electron microscopy, Western blot, and flow cytometry analyses. The structural and biochemical analysis unveiled that supernatants contain vesicles that have the size and the shape of exosomes, which were immunopositive for the exosomal markers TSG101, flotillin-1, CD63, and CD9. The marker content increased upon the exposure of nerve terminals to the high-KCl stimulus, consistent with an active release of the exosomes from the depolarized synaptosomes. High KCl-induced depolarization elicits the Ca2+-dependent exocytosis of glutamate. Interestingly, the depolarization-evoked release of exosomes from cortical synaptosomes also occurred in a Ca2+-dependent fashion, since the TSG101, CD63, and CD9 contents in the exosomal fraction isolated from supernatants of depolarized synaptosomes were significantly reduced when omitting external Ca2+ ions. Differently, (±)-baclofen (10 µM), which significantly reduced the glutamate exocytosis, did not affect the amount of exosomal markers, suggesting that the GABAB-mediated mechanism does not control the exosome release. Our findings suggest that the exposure of synaptosomes to a depolarizing stimulus elicits a presynaptic release of exosomes that occurs in a Ca2+-dependent fashion. The insensitivity to the presynaptic GABAB receptors, however, leaves open the question on whether the release of exosomes could be a druggable target for new therapeutic intervention for the cure of synaptopathies.

Research paper thumbnail of Liposomes Loaded with the Proteasome Inhibitor Z-Leucinyl-Leucinyl-Norleucinal Are Effective in Inducing Apoptosis in Colorectal Cancer Cell Lines

Membranes

Colorectal cancer (CRC) is one of the main causes of cancer-related death in developed countries.... more Colorectal cancer (CRC) is one of the main causes of cancer-related death in developed countries. Targeted therapies and conventional chemotherapeutics have been developed to help treat this type of aggressive cancer. Among these, the monoclonal antibodies cetuximab (Cxm) and panitumumab specifically target and inactivate the signaling of ERBB1 (EGF receptor), a key player in the development and progression of this cancer. Unfortunately, these antibodies are effective only on a small fraction of patients due to primary or secondary/acquired resistance. However, as ERBB1 cell surface expression is often maintained in resistant tumors, ERBB1 can be exploited as a target to deliver other drugs. Liposomes and immunoliposomes are under intensive investigation as pharmaceutical nanocarriers and can be functionalized with specific antibodies. In this study, we first investigated the anti-cancer activity of a cell permeable tripeptide, leucine-leucin-norleucinal (LLNle), an inhibitor of gam...

Research paper thumbnail of Mechanisms underlying the predictive power of high skeletal muscle uptake of FDG in amyotrophic lateral sclerosis

EJNMMI Research

Background: We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal ... more Background: We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal muscles predicts disease aggressiveness in patients with amyotrophic lateral sclerosis (ALS). The present experimental study aimed to assess whether this predictive potential reflects the link between FDG uptake and redox stress that has been previously reported in different tissues and disease models. Methods: The study included 15 SOD1 G93A mice (as experimental ALS model) and 15 wildtype mice (around 120 days old). Mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested quadriceps and hearts by biochemical, immunohistochemical, and immunofluorescence analysis. Colocalization between the endoplasmic reticulum (ER) and the fluorescent FDG analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was performed in fresh skeletal muscle sections. Finally, mitochondrial ultrastructure and bioenergetics were evaluated in harvested quadriceps and hearts.

Research paper thumbnail of The Secretome Derived From Mesenchymal Stromal Cells Cultured in a Xeno-Free Medium Promotes Human Cartilage Recovery in vitro

Frontiers in Bioengineering and Biotechnology

Osteoarthritis (OA) is a disabling joint disorder causing articular cartilage degeneration. Curre... more Osteoarthritis (OA) is a disabling joint disorder causing articular cartilage degeneration. Currently, the treatments are mainly aimed to pain and symptoms relief, rather than disease amelioration. Human bone marrow stromal cells (hBMSCs) have emerged as a promising paracrine mechanism-based tool for OA treatment. Here, we investigate the therapeutic potential of conditioned media (CM) and extracellular vesicles (EVs) isolated from hBMSC and grown in a xeno-free culture system (XFS) compared to the conventional fetal bovine serum-culture system (FBS) in an in vitro model of OA. First, we observed that XFS promoted growth and viability of hBMSCs compared to FBScontaining medium while preserving their typical phenotype. The biological effects of the CM derived from hBMSC cultivated in XFS-and FBS-based medium were tested on IL-1α treated human chondrocytes, to mimic the OA enviroment. Treatment with CM derived from XFS-cultured hBMSC inhibited IL-1α-induced expression of IL-6, IL-8, and COX-2 by hACs compared to FBS-based condition. Furthermore, we observed that hBMSCs grown in XFS produced a higher amount of EVs compared to FBS-culture. The hBMSC-EVs not only inhibit the adverse effects of IL-1α-induced inflammation, but play a significant in vitro chondroprotective effect. In conclusion, the XFS medium was found to be suitable for isolation and expansion of hBMSCs with increased safety profile and intended for ready-to-use clinical therapies.

Research paper thumbnail of Exosomes From Astrocyte Processes: Signaling to Neurons

Frontiers in Pharmacology

It is widely recognized that extracellular vesicles subserve non-classical signal transmission in... more It is widely recognized that extracellular vesicles subserve non-classical signal transmission in the central nervous system. Here we assess if the astrocyte processes, that are recognized to play crucial roles in intercellular communication at the synapses and in neuron-astrocyte networks, could convey messages through extracellular vesicles. Our findings indicate, for the first time that freshly isolated astrocyte processes prepared from adult rat cerebral cortex, can indeed participate to signal transmission in central nervous system by releasing exosomes that by volume transmission might target near or longdistance sites. It is noteworthy that the exosomes released from the astrocyte processes proved ability to selectively target neurons. The astrocyte-derived exosomes were proven positive for neuroglobin, a protein functioning as neuroprotectant against cell insult; the possibility that exosomes might transfer neuroglobin to neurons would add a mechanism to the potential astrocytic neuroprotectant activity. Notably, the exosomes released from the processes of astrocytes maintained markers, which prove their parental astrocytic origin. This potentially allows the assessment of the cellular origin of exosomes that might be recovered from body fluids.

Research paper thumbnail of Multidisciplinary development of a simulation of industrial plant disasters designed for improving safety through training and new procedures

International Journal of Simulation and Process Modelling

Industrial accidents are an unfortunate reality, therefore there are just a limited number of sit... more Industrial accidents are an unfortunate reality, therefore there are just a limited number of situational training exercises to cope with the management of these kinds of emergencies. The authors propose a simulation approach for developing innovative response procedures during industrial crises integrated with start system triage model. The proposed simulator is based on an interoperable architecture using the new MS2G paradigm and it designed for being federated by IEEE 1516 HLA with other systems. The paper presents its use as test-bed on a specific case study conducting experiments over the SPIDER virtual platform developed by simulation team. In facts these experiments were based on two university classes that performed tests and training experiences on multiple target functions including mission time, detection, classification and securing of injured people. The analysis included also use of innovative procedures based on autonomous systems. The obtained results highlighted improvements on the learning curves with respect to specific target functions. These results confirm the potential of this approach as a training strategy that combines medical skills with engineering to improve reaction capabilities and situation awareness during industrial crises.

Research paper thumbnail of The novel diterpene 7β-acetoxy-20-hydroxy-19,20-epoxyroyleanone from Salvia corrugata shows complex cytotoxic activities against human breast epithelial cells

Life Sciences

The novel diterpene 7β-acetoxy-20-hydroxy-19,20-epoxyroyleanone from Salvia corrugata shows compl... more The novel diterpene 7β-acetoxy-20-hydroxy-19,20-epoxyroyleanone from Salvia corrugata shows complex cytotoxic activities against human breast epithelial cells

Research paper thumbnail of The chromodomain helicase CHD4 regulates ERBB2 signaling pathway and autophagy in ERBB2+ breast cancer cells

Biology Open

The chromodomain helicase DNA-binding 4 (CHD4), a member of the nucleosome remodeling and deacety... more The chromodomain helicase DNA-binding 4 (CHD4), a member of the nucleosome remodeling and deacetylases (NuRD) complex, has been identified as an oncogene that modulates proliferation and migration of breast cancers (BC). ERBB2 is an oncogenic driver in 20-30% of BC in which its overexpression leads to increased chemoresistance. Here we investigated whether CHD4 depletion affects the ERBB2 cascade and autophagy, which represents a mechanism of resistance against Trastuzumab (Tz), a therapeutic anti-ERBB2 antibody. We show that CHD4 depletion in two ERBB2+ BC cell lines strongly inhibits cell proliferation, induces p27KIP1 upregulation, Tyr1248 ERBB2 phosphorylation, ERK1/2 and AKT dephosphorylation, and downregulation of both ERBB2 and PI3K levels. Moreover, CHD4 silencing impairs late stages of autophagy, resulting in increased levels of LC3 II and SQSTM1/p62, lysosomal enlargement and accumulation of autolysosomes (ALs). Importantly, we show that CHD4 depletion and concomitant trea...

Research paper thumbnail of Autophagic processes in Mytilus galloprovincialis hemocytes: Effects of Vibrio tapetis

Fish & Shellfish Immunology

Autophagy is a highly conserved and regulated catabolic process involved in maintaining cell home... more Autophagy is a highly conserved and regulated catabolic process involved in maintaining cell homeostasis in response to different stressors. The autophagic machinery is also used as an innate immune mechanism against microbial infection. In invertebrates, that lack acquired immunity, autophagy may thus play a key role in the protection against potential pathogens. In aquatic molluscs, evidence has been provided for induction of autophagy by starvation and different environmental stressors; however, no information is available on autophagic pathways in the immune cells, the hemocytes. In this work, the autophagic processes were investigated in the hemocytes of the marine bivalve, the mussel Mytilus galloprovincialis. The effects of classical inducers/inhibitors of mammalian autophagy were first tested. Rapamycin induced a decrease in lysosomal membrane stability-LMS that was prevented by the autophagy inhibitor Wortmannin. Increased MDC fluorescence and expression of LC3-II were also observed. Moreover, responses to in vitro challenge with the bivalve pathogen Vibrio tapetis were evaluated. Mussel hemocytes were unable to activate the immune response towards V. tapetis; however, bacterial challenge induced a moderate decrease in LMS, corresponding to lysosomal activation but no cytotoxicity; the effect was prevented by Wortmannin. TEM observations showed that V. tapetis resulted in rapid formation of autophagosomes and autolysosomes. Accordingly, increased LC3-II expression, decreased levels of phosphorylated mTor and of p62 were observed. The results represent the first evidence for autophagic processes in bivalve hemocytes in response to bacterial challenge, and underline the protective role of autophagy towards potential pathogenic vibrios.

Research paper thumbnail of Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration

Autophagy

Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts a... more Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts aggregate-prone misfolded protein toxicity. Autophagy induction might be beneficial in neurodegenerative diseases (NDs). The natural compound trehalose promotes autophagy via TFEB (transcription factor EB), ameliorating disease phenotype in multiple ND models, but its mechanism is still obscure. We demonstrated that trehalose regulates autophagy by inducing rapid and transient lysosomal enlargement and membrane permeabilization (LMP). This effect correlated with the calcium-dependent phosphatase PPP3/calcineurin activation, TFEB dephosphorylation and nuclear translocation. Trehalose upregulated genes for the TFEB target and regulator Ppargc1a, lysosomal hydrolases and membrane proteins (Ctsb, Gla, Lamp2a, Mcoln1, Tpp1) and several autophagy-related components (Becn1, Atg10, Atg12, Sqstm1/p62, Map1lc3b, Hspb8 and Bag3) mostly in a PPP3-and TFEB-dependent manner. TFEB silencing counteracted the trehalose prodegradative activity on misfolded protein causative of motoneuron diseases. Similar effects were exerted by trehalase-resistant trehalose analogs, melibiose and lactulose. Thus, limited lysosomal damage might induce autophagy, perhaps as a compensatory mechanism, a process that is beneficial to counteract neurodegeneration.

Research paper thumbnail of Responses of Mytilus galloprovincialis to challenge with the emerging marine pathogen Vibrio coralliilyticus

Fish & Shellfish Immunology

Vibrio coralliilyticus (V.c.) has emerged as a coral pathogen of concern throughout the Indo-Paci... more Vibrio coralliilyticus (V.c.) has emerged as a coral pathogen of concern throughout the Indo-Pacific reef. The interest towards understanding its ecology and pathogenic potential has increased since V.c. was shown to be strongly virulent also for other species; in particular, it represents a serious threat for bivalve aquaculture, being one of the most important emerging pathogen responsible for oyster larval mortalities worldwide. V.c. has a tightly regulated temperature-dependent virulence and it has been related to mass mortalities events of benthic invertebrates also in the temperate northwestern Mediterranean Sea. However, no data are available on the effects of V.c. in the mussel Mytilus galloprovincialis, the most abundant aquacultured species in this area. In this work, responses of M. galloprovincialis to challenge with V.c. (ATCC BAA-450) were investigated. In vitro, short term responses of mussel hemocytes were evaluated in terms of lysosomal membrane stability, bactericidal activity, lysozyme release, ROS and NO production, and ultrastructural changes, evaluated by TEM. In vivo, hemolymph parameters were measured in mussels challenged with V.c. at 24h p.i. Moreover, the effects of V.c. on mussel early embryo development (at 48 hpf) were evaluated. The results show that both in vitro and in vivo, mussels were unable to activate immune response towards V.c., and that challenge mainly induced lysosomal stress in the hemocytes. Moreover, V.c. showed a strong and concentration-dependent embryotoxicity. Overall, the results indicate that, although M. galloprovincialis is considered a resistant species to vibrio infections, the emerging pathogen V.c. can represent a potential threat to mussel aquaculture.

Research paper thumbnail of {"__content__"=>"Characterization of the Mitochondrial Aerobic Metabolism in the Pre- and Perisynaptic Districts of the SOD1 Mouse Model of Amyotrophic Lateral Sclerosis.", "sup"=>{"__content__"=>"G93A"}}

Molecular neurobiology, Jan 14, 2018

Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characteriz... more Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characterized by muscle wasting, weakness, and spasticity due to a progressive degeneration of cortical, brainstem, and spinal motor neurons. The etiopathological causes are still largely obscure, although astrocytes definitely play a role in neuronal damage. Several mechanisms have been proposed to concur to neurodegeneration in ALS, including mitochondrial dysfunction. We have previously shown profound modifications of glutamate release and presynaptic plasticity in the spinal cord of the SOD1 mouse model of ALS. In this work, we characterized, for the first time, the aerobic metabolism in two specific compartments actively involved in neurotransmission (i.e. the presynaptic district, using purified synaptosomes, and the perisynaptic astrocyte processes, using purified gliosomes) in SOD1 mice at different stages of the disease. ATP/AMP ratio was lower in synaptosomes isolated from the spinal cord...

Research paper thumbnail of Simulated Microgravity Effects on Human Adenocarcinoma Alveolar Epithelial Cells: Characterization of Morphological, Functional, and Epigenetic Parameters

International Journal of Molecular Sciences

Background: In space, the reduction or loss of the gravity vector greatly affects the interaction... more Background: In space, the reduction or loss of the gravity vector greatly affects the interaction between cells. Since the beginning of the space age, microgravity has been identified as an informative tool in biomedicine, including cancer research. The A549 cell line is a hypotriploid human alveolar basal epithelial cell line widely used as a model for lung adenocarcinoma. Microgravity has been reported to interfere with mitochondrial activity, energy metabolism, cell vitality and proliferation, chemosensitivity, invasion and morphology of cells and organelles in various biological systems. Concerning lung cancer, several studies have reported the ability of microgravity to modulate the carcinogenic and metastatic process. To investigate these processes, A549 cells were exposed to simulated microgravity (µG) for different time points. Methods: We performed cell cycle and proliferation assays, ultrastructural analysis of mitochondria architecture, as well as a global analysis of miR...

Research paper thumbnail of Imaging of Endocytic Trafficking and Extracellular Vesicles Released Under Neratinib Treatment in ERBB2+ Breast Cancer Cells

Journal of Histochemistry & Cytochemistry

Breast cancers (BCa) with ERBB2 amplification show rapid tumor growth, increased disease progress... more Breast cancers (BCa) with ERBB2 amplification show rapid tumor growth, increased disease progression, and lower survival rate. Deregulated intracellular trafficking and extracellular vesicle (EVs) release are mechanisms that support cancer progression and resistance to treatments. Neratinib (NE) is a Food and Drug Administration–approved pan-ERBB inhibitor employed for the treatment of ERBB2+ BCa that blocks signaling and causes survival inhibition. However, the effects of NE on ERBB2 internalization, its trafficking to multivesicular bodies (MVBs), and the release of EVs that originate from these organelles remain poorly studied. By confocal and electron microscopy, we observed that low nanomolar doses of NE induced a modest ERBB2 internalization along with an increase of clathrin-mediated endocytosis and of the CD63+ MVB compartment in SKBR-3 cells. Furthermore, we showed in the culture supernatant two distinct EV subsets, based on their size and ERBB2 positivity: small (30–100 nm...

Research paper thumbnail of Simulated Microgravity Effects on Human Adenocarcinoma Alveolar Epithelial Cells: Characterization of Morphological, Functional, and Epigenetic Parameters

International Journal of Molecular Sciences, 2021

Background: In space, the reduction or loss of the gravity vector greatly affects the interaction... more Background: In space, the reduction or loss of the gravity vector greatly affects the interaction between cells. Since the beginning of the space age, microgravity has been identified as an informative tool in biomedicine, including cancer research. The A549 cell line is a hypotriploid human alveolar basal epithelial cell line widely used as a model for lung adenocarcinoma. Microgravity has been reported to interfere with mitochondrial activity, energy metabolism, cell vitality and proliferation, chemosensitivity, invasion and morphology of cells and organelles in various biological systems. Concerning lung cancer, several studies have reported the ability of microgravity to modulate the carcinogenic and metastatic process. To investigate these processes, A549 cells were exposed to simulated microgravity (µG) for different time points. Methods: We performed cell cycle and proliferation assays, ultrastructural analysis of mitochondria architecture, as well as a global analysis of miR...

Research paper thumbnail of 1 ERBB 1 and ERBB 2 Positive Medullary Thyroid Carcinoma : 2 A Case Report 3 4

4 Michele Minuto, Emanuela Varaldo, Gianluca Marcocci, Amleto de Santanna, Ermanno 5 Ciccone, Kat... more 4 Michele Minuto, Emanuela Varaldo, Gianluca Marcocci, Amleto de Santanna, Ermanno 5 Ciccone, Katia Cortese* 6 7 1 DISC, Department of Surgical Sciences, University of Genoa, Largo R. Benzi, 8, Genoa, Italy; 8 Michele.Minuto@unige.it (MM); Emanuela.Varaldo@unige.it (EV); 9 gianlucamarcocci91@gmail.com (GM) 10 2 DIMES, Department of Experimental Medicine, University of Genoa, Via Antonio de Toni 14, 11 16132, Genoa, Italy; amletodesantanna@unige.it (ADS); cicc@unige.it (EC); cortesek@unige.it 12 (KC) 13

Research paper thumbnail of Comprehensive Profiling of Secretome Formulations from Fetal- and Perinatal Human Amniotic Fluid Stem Cells

International Journal of Molecular Sciences

We previously reported that c-KIT+ human amniotic-fluid derived stem cells obtained from leftover... more We previously reported that c-KIT+ human amniotic-fluid derived stem cells obtained from leftover samples of routine II trimester prenatal diagnosis (fetal hAFS) are endowed with regenerative paracrine potential driving pro-survival, anti-fibrotic and proliferative effects. hAFS may also be isolated from III trimester clinical waste samples during scheduled C-sections (perinatal hAFS), thus offering a more easily accessible alternative when compared to fetal hAFS. Nonetheless, little is known about the paracrine profile of perinatal hAFS. Here we provide a detailed characterization of the hAFS total secretome (i.e., the entirety of soluble paracrine factors released by cells in the conditioned medium, hAFS-CM) and the extracellular vesicles (hAFS-EVs) within it, from II trimester fetal- versus III trimester perinatal cells. Fetal- and perinatal hAFS were characterized and subject to hypoxic preconditioning to enhance their paracrine potential. hAFS-CM and hAFS-EV formulations were a...

Research paper thumbnail of Novel imaging techniques and biological methods for breast cancer evaluation: overview and update

Journal of Radiological Review

Research paper thumbnail of Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs)

Biomaterials

Mesenchymal stromal cells (MSCs) are characterized by a regulatory phenotype and respond promptly... more Mesenchymal stromal cells (MSCs) are characterized by a regulatory phenotype and respond promptly to the environmental signals modulating their secretory activity. An appropriate preconditioning may induce MSCs to release secretomes with an enhanced regenerative potential. However, it fails to take into account that secretomes are composed by both soluble factors and extracellular vesicles (EVs), whose functions could be altered differently by the preconditioning approach. Here we demonstrate that the MSC secretome is strongly modulated by the simultaneous stimulation with hypoxia and pro-inflammatory cytokines, used to mimic the harsh environment present at the site of injury. We observed that the environmental variations strongly influenced the angiogenic potential of the different secretome fractions. Upon inflammation, the pro-angiogenic capacity of the soluble component of the MSC secretome was strongly inhibited, regardless of the oxygen level, while the EV-encapsulated component was not significantly affected by the inflammatory stimuli. These effects were accompanied by the modulation of the secreted proteins. On one hand, inflammation-activated MSCs release proteins mainly involved in the interaction with innate immune cells and in tissue remodeling/repair; on the other hand, when MSCs are not exposed to an inflamed environment, they respond to the different oxygen levels modulating the expression of proteins involved in the angiogenic process. The cargo content (in terms of miRNAs) of the corresponding EV fractions was less sensitive to the influence of the external stimuli. Our findings suggest that the therapeutic efficacy of MSC-based therapies could be enhanced by selecting the appropriate preconditioning approach and carefully discriminating its effects on the different secretome components.

Research paper thumbnail of Synthesis, Photoisomerization, Antioxidant Activity, and Lipid-Lowering Effect of Ferulic Acid and Feruloyl Amides

Molecules

The Ugi four-component reaction employing naturally occurred ferulic acid (FA) is proposed as a c... more The Ugi four-component reaction employing naturally occurred ferulic acid (FA) is proposed as a convenient method to synthesize feruloyl tertiary amides. Applying this strategy, a peptoid-like derivative of ferulic acid (FEF77) containing 2 additional hydroxy-substituted aryl groups, has been synthesized. The influence of the configuration of the double bond of ferulic acid and feruloyl amide on the antioxidant activity has been investigated thanks to light-mediated isomerization studies. At the cellular level, both FA, trans and cis isomers of FEF77 were able to protect human endothelial cord vein (HECV) cells from the oxidative damage induced by exposure to hydrogen peroxide, as measured by cell viability and ROS production assays. Moreover, in steatotic FaO rat hepatoma cells, an in vitro model resembling non-alcoholic fatty liver disease (NAFLD), the molecules exhibited a lipid-lowering effect, which, along with the antioxidant properties, points to consider feruloyl amides for ...

Research paper thumbnail of The depolarization-evoked, Ca2+-dependent release of exosomes from mouse cortical nerve endings: new insights into synaptic transmission

Whether exosomes can be actively released from presynaptic nerve terminals is a matter of debate.... more Whether exosomes can be actively released from presynaptic nerve terminals is a matter of debate. To address the point, mouse cortical synaptosomes were incubated under basal and depolarizing (25 mM KCl-enriched medium) conditions, and extracellular vesicles were isolated from the synaptosomal supernatants to be characterized by dynamic light scattering, transmission electron microscopy, Western blot, and flow cytometry analyses. The structural and biochemical analysis unveiled that supernatants contain vesicles that have the size and the shape of exosomes, which were immunopositive for the exosomal markers TSG101, flotillin-1, CD63, and CD9. The marker content increased upon the exposure of nerve terminals to the high-KCl stimulus, consistent with an active release of the exosomes from the depolarized synaptosomes. High KCl-induced depolarization elicits the Ca2+-dependent exocytosis of glutamate. Interestingly, the depolarization-evoked release of exosomes from cortical synaptosomes also occurred in a Ca2+-dependent fashion, since the TSG101, CD63, and CD9 contents in the exosomal fraction isolated from supernatants of depolarized synaptosomes were significantly reduced when omitting external Ca2+ ions. Differently, (±)-baclofen (10 µM), which significantly reduced the glutamate exocytosis, did not affect the amount of exosomal markers, suggesting that the GABAB-mediated mechanism does not control the exosome release. Our findings suggest that the exposure of synaptosomes to a depolarizing stimulus elicits a presynaptic release of exosomes that occurs in a Ca2+-dependent fashion. The insensitivity to the presynaptic GABAB receptors, however, leaves open the question on whether the release of exosomes could be a druggable target for new therapeutic intervention for the cure of synaptopathies.

Research paper thumbnail of Liposomes Loaded with the Proteasome Inhibitor Z-Leucinyl-Leucinyl-Norleucinal Are Effective in Inducing Apoptosis in Colorectal Cancer Cell Lines

Membranes

Colorectal cancer (CRC) is one of the main causes of cancer-related death in developed countries.... more Colorectal cancer (CRC) is one of the main causes of cancer-related death in developed countries. Targeted therapies and conventional chemotherapeutics have been developed to help treat this type of aggressive cancer. Among these, the monoclonal antibodies cetuximab (Cxm) and panitumumab specifically target and inactivate the signaling of ERBB1 (EGF receptor), a key player in the development and progression of this cancer. Unfortunately, these antibodies are effective only on a small fraction of patients due to primary or secondary/acquired resistance. However, as ERBB1 cell surface expression is often maintained in resistant tumors, ERBB1 can be exploited as a target to deliver other drugs. Liposomes and immunoliposomes are under intensive investigation as pharmaceutical nanocarriers and can be functionalized with specific antibodies. In this study, we first investigated the anti-cancer activity of a cell permeable tripeptide, leucine-leucin-norleucinal (LLNle), an inhibitor of gam...

Research paper thumbnail of Mechanisms underlying the predictive power of high skeletal muscle uptake of FDG in amyotrophic lateral sclerosis

EJNMMI Research

Background: We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal ... more Background: We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal muscles predicts disease aggressiveness in patients with amyotrophic lateral sclerosis (ALS). The present experimental study aimed to assess whether this predictive potential reflects the link between FDG uptake and redox stress that has been previously reported in different tissues and disease models. Methods: The study included 15 SOD1 G93A mice (as experimental ALS model) and 15 wildtype mice (around 120 days old). Mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested quadriceps and hearts by biochemical, immunohistochemical, and immunofluorescence analysis. Colocalization between the endoplasmic reticulum (ER) and the fluorescent FDG analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was performed in fresh skeletal muscle sections. Finally, mitochondrial ultrastructure and bioenergetics were evaluated in harvested quadriceps and hearts.

Research paper thumbnail of The Secretome Derived From Mesenchymal Stromal Cells Cultured in a Xeno-Free Medium Promotes Human Cartilage Recovery in vitro

Frontiers in Bioengineering and Biotechnology

Osteoarthritis (OA) is a disabling joint disorder causing articular cartilage degeneration. Curre... more Osteoarthritis (OA) is a disabling joint disorder causing articular cartilage degeneration. Currently, the treatments are mainly aimed to pain and symptoms relief, rather than disease amelioration. Human bone marrow stromal cells (hBMSCs) have emerged as a promising paracrine mechanism-based tool for OA treatment. Here, we investigate the therapeutic potential of conditioned media (CM) and extracellular vesicles (EVs) isolated from hBMSC and grown in a xeno-free culture system (XFS) compared to the conventional fetal bovine serum-culture system (FBS) in an in vitro model of OA. First, we observed that XFS promoted growth and viability of hBMSCs compared to FBScontaining medium while preserving their typical phenotype. The biological effects of the CM derived from hBMSC cultivated in XFS-and FBS-based medium were tested on IL-1α treated human chondrocytes, to mimic the OA enviroment. Treatment with CM derived from XFS-cultured hBMSC inhibited IL-1α-induced expression of IL-6, IL-8, and COX-2 by hACs compared to FBS-based condition. Furthermore, we observed that hBMSCs grown in XFS produced a higher amount of EVs compared to FBS-culture. The hBMSC-EVs not only inhibit the adverse effects of IL-1α-induced inflammation, but play a significant in vitro chondroprotective effect. In conclusion, the XFS medium was found to be suitable for isolation and expansion of hBMSCs with increased safety profile and intended for ready-to-use clinical therapies.

Research paper thumbnail of Exosomes From Astrocyte Processes: Signaling to Neurons

Frontiers in Pharmacology

It is widely recognized that extracellular vesicles subserve non-classical signal transmission in... more It is widely recognized that extracellular vesicles subserve non-classical signal transmission in the central nervous system. Here we assess if the astrocyte processes, that are recognized to play crucial roles in intercellular communication at the synapses and in neuron-astrocyte networks, could convey messages through extracellular vesicles. Our findings indicate, for the first time that freshly isolated astrocyte processes prepared from adult rat cerebral cortex, can indeed participate to signal transmission in central nervous system by releasing exosomes that by volume transmission might target near or longdistance sites. It is noteworthy that the exosomes released from the astrocyte processes proved ability to selectively target neurons. The astrocyte-derived exosomes were proven positive for neuroglobin, a protein functioning as neuroprotectant against cell insult; the possibility that exosomes might transfer neuroglobin to neurons would add a mechanism to the potential astrocytic neuroprotectant activity. Notably, the exosomes released from the processes of astrocytes maintained markers, which prove their parental astrocytic origin. This potentially allows the assessment of the cellular origin of exosomes that might be recovered from body fluids.

Research paper thumbnail of Multidisciplinary development of a simulation of industrial plant disasters designed for improving safety through training and new procedures

International Journal of Simulation and Process Modelling

Industrial accidents are an unfortunate reality, therefore there are just a limited number of sit... more Industrial accidents are an unfortunate reality, therefore there are just a limited number of situational training exercises to cope with the management of these kinds of emergencies. The authors propose a simulation approach for developing innovative response procedures during industrial crises integrated with start system triage model. The proposed simulator is based on an interoperable architecture using the new MS2G paradigm and it designed for being federated by IEEE 1516 HLA with other systems. The paper presents its use as test-bed on a specific case study conducting experiments over the SPIDER virtual platform developed by simulation team. In facts these experiments were based on two university classes that performed tests and training experiences on multiple target functions including mission time, detection, classification and securing of injured people. The analysis included also use of innovative procedures based on autonomous systems. The obtained results highlighted improvements on the learning curves with respect to specific target functions. These results confirm the potential of this approach as a training strategy that combines medical skills with engineering to improve reaction capabilities and situation awareness during industrial crises.

Research paper thumbnail of The novel diterpene 7β-acetoxy-20-hydroxy-19,20-epoxyroyleanone from Salvia corrugata shows complex cytotoxic activities against human breast epithelial cells

Life Sciences

The novel diterpene 7β-acetoxy-20-hydroxy-19,20-epoxyroyleanone from Salvia corrugata shows compl... more The novel diterpene 7β-acetoxy-20-hydroxy-19,20-epoxyroyleanone from Salvia corrugata shows complex cytotoxic activities against human breast epithelial cells

Research paper thumbnail of The chromodomain helicase CHD4 regulates ERBB2 signaling pathway and autophagy in ERBB2+ breast cancer cells

Biology Open

The chromodomain helicase DNA-binding 4 (CHD4), a member of the nucleosome remodeling and deacety... more The chromodomain helicase DNA-binding 4 (CHD4), a member of the nucleosome remodeling and deacetylases (NuRD) complex, has been identified as an oncogene that modulates proliferation and migration of breast cancers (BC). ERBB2 is an oncogenic driver in 20-30% of BC in which its overexpression leads to increased chemoresistance. Here we investigated whether CHD4 depletion affects the ERBB2 cascade and autophagy, which represents a mechanism of resistance against Trastuzumab (Tz), a therapeutic anti-ERBB2 antibody. We show that CHD4 depletion in two ERBB2+ BC cell lines strongly inhibits cell proliferation, induces p27KIP1 upregulation, Tyr1248 ERBB2 phosphorylation, ERK1/2 and AKT dephosphorylation, and downregulation of both ERBB2 and PI3K levels. Moreover, CHD4 silencing impairs late stages of autophagy, resulting in increased levels of LC3 II and SQSTM1/p62, lysosomal enlargement and accumulation of autolysosomes (ALs). Importantly, we show that CHD4 depletion and concomitant trea...

Research paper thumbnail of Autophagic processes in Mytilus galloprovincialis hemocytes: Effects of Vibrio tapetis

Fish & Shellfish Immunology

Autophagy is a highly conserved and regulated catabolic process involved in maintaining cell home... more Autophagy is a highly conserved and regulated catabolic process involved in maintaining cell homeostasis in response to different stressors. The autophagic machinery is also used as an innate immune mechanism against microbial infection. In invertebrates, that lack acquired immunity, autophagy may thus play a key role in the protection against potential pathogens. In aquatic molluscs, evidence has been provided for induction of autophagy by starvation and different environmental stressors; however, no information is available on autophagic pathways in the immune cells, the hemocytes. In this work, the autophagic processes were investigated in the hemocytes of the marine bivalve, the mussel Mytilus galloprovincialis. The effects of classical inducers/inhibitors of mammalian autophagy were first tested. Rapamycin induced a decrease in lysosomal membrane stability-LMS that was prevented by the autophagy inhibitor Wortmannin. Increased MDC fluorescence and expression of LC3-II were also observed. Moreover, responses to in vitro challenge with the bivalve pathogen Vibrio tapetis were evaluated. Mussel hemocytes were unable to activate the immune response towards V. tapetis; however, bacterial challenge induced a moderate decrease in LMS, corresponding to lysosomal activation but no cytotoxicity; the effect was prevented by Wortmannin. TEM observations showed that V. tapetis resulted in rapid formation of autophagosomes and autolysosomes. Accordingly, increased LC3-II expression, decreased levels of phosphorylated mTor and of p62 were observed. The results represent the first evidence for autophagic processes in bivalve hemocytes in response to bacterial challenge, and underline the protective role of autophagy towards potential pathogenic vibrios.

Research paper thumbnail of Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration

Autophagy

Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts a... more Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts aggregate-prone misfolded protein toxicity. Autophagy induction might be beneficial in neurodegenerative diseases (NDs). The natural compound trehalose promotes autophagy via TFEB (transcription factor EB), ameliorating disease phenotype in multiple ND models, but its mechanism is still obscure. We demonstrated that trehalose regulates autophagy by inducing rapid and transient lysosomal enlargement and membrane permeabilization (LMP). This effect correlated with the calcium-dependent phosphatase PPP3/calcineurin activation, TFEB dephosphorylation and nuclear translocation. Trehalose upregulated genes for the TFEB target and regulator Ppargc1a, lysosomal hydrolases and membrane proteins (Ctsb, Gla, Lamp2a, Mcoln1, Tpp1) and several autophagy-related components (Becn1, Atg10, Atg12, Sqstm1/p62, Map1lc3b, Hspb8 and Bag3) mostly in a PPP3-and TFEB-dependent manner. TFEB silencing counteracted the trehalose prodegradative activity on misfolded protein causative of motoneuron diseases. Similar effects were exerted by trehalase-resistant trehalose analogs, melibiose and lactulose. Thus, limited lysosomal damage might induce autophagy, perhaps as a compensatory mechanism, a process that is beneficial to counteract neurodegeneration.

Research paper thumbnail of Responses of Mytilus galloprovincialis to challenge with the emerging marine pathogen Vibrio coralliilyticus

Fish & Shellfish Immunology

Vibrio coralliilyticus (V.c.) has emerged as a coral pathogen of concern throughout the Indo-Paci... more Vibrio coralliilyticus (V.c.) has emerged as a coral pathogen of concern throughout the Indo-Pacific reef. The interest towards understanding its ecology and pathogenic potential has increased since V.c. was shown to be strongly virulent also for other species; in particular, it represents a serious threat for bivalve aquaculture, being one of the most important emerging pathogen responsible for oyster larval mortalities worldwide. V.c. has a tightly regulated temperature-dependent virulence and it has been related to mass mortalities events of benthic invertebrates also in the temperate northwestern Mediterranean Sea. However, no data are available on the effects of V.c. in the mussel Mytilus galloprovincialis, the most abundant aquacultured species in this area. In this work, responses of M. galloprovincialis to challenge with V.c. (ATCC BAA-450) were investigated. In vitro, short term responses of mussel hemocytes were evaluated in terms of lysosomal membrane stability, bactericidal activity, lysozyme release, ROS and NO production, and ultrastructural changes, evaluated by TEM. In vivo, hemolymph parameters were measured in mussels challenged with V.c. at 24h p.i. Moreover, the effects of V.c. on mussel early embryo development (at 48 hpf) were evaluated. The results show that both in vitro and in vivo, mussels were unable to activate immune response towards V.c., and that challenge mainly induced lysosomal stress in the hemocytes. Moreover, V.c. showed a strong and concentration-dependent embryotoxicity. Overall, the results indicate that, although M. galloprovincialis is considered a resistant species to vibrio infections, the emerging pathogen V.c. can represent a potential threat to mussel aquaculture.

Research paper thumbnail of {"__content__"=>"Characterization of the Mitochondrial Aerobic Metabolism in the Pre- and Perisynaptic Districts of the SOD1 Mouse Model of Amyotrophic Lateral Sclerosis.", "sup"=>{"__content__"=>"G93A"}}

Molecular neurobiology, Jan 14, 2018

Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characteriz... more Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characterized by muscle wasting, weakness, and spasticity due to a progressive degeneration of cortical, brainstem, and spinal motor neurons. The etiopathological causes are still largely obscure, although astrocytes definitely play a role in neuronal damage. Several mechanisms have been proposed to concur to neurodegeneration in ALS, including mitochondrial dysfunction. We have previously shown profound modifications of glutamate release and presynaptic plasticity in the spinal cord of the SOD1 mouse model of ALS. In this work, we characterized, for the first time, the aerobic metabolism in two specific compartments actively involved in neurotransmission (i.e. the presynaptic district, using purified synaptosomes, and the perisynaptic astrocyte processes, using purified gliosomes) in SOD1 mice at different stages of the disease. ATP/AMP ratio was lower in synaptosomes isolated from the spinal cord...