Kavitha Bernhardt - Academia.edu (original) (raw)

Papers by Kavitha Bernhardt

Research paper thumbnail of Immunoinformatic prediction to identify Staphylococcus aureus peptides that bind to CD8+ T-cells as potential vaccine candidates

Veterinary World, Jun 28, 2024

Background and Aim: Staphylococcus aureus, with its diverse virulence factors and immune response... more Background and Aim: Staphylococcus aureus, with its diverse virulence factors and immune response evasion mechanisms, presents a formidable challenge as an opportunistic pathogen. Developing an effective vaccine against S. aureus has proven elusive despite extensive efforts. Autologous Staphylococcus lysate (ASL) treatment has proven effective in triggering an immune response against bovine mastitis. Peptides that stimulate the immune response can be the subject of further research. The study aimed to use immunoinformatics tools to identify epitopes on S. aureus surface and secretory proteins that can bind to major histocompatibility complex class I (MHC I) and CD8+ T-cells. This method aids in discovering prospective vaccine candidates and elucidating the rationale behind ASL therapy’s efficacy.

Materials and Methods: Proteins were identified using both literature search and the National Center for Biotechnology Information search engine Entrez. Self and non-self peptides, allergenicity predictions, epitope locations, and physicochemical characteristics were determined using sequence alignment, AllerTOP, SVMTriP, and Protein-Sol tools. Hex was employed for simulating the docking interactions between S. aureus proteins and the MHC I + CD8+ T-cells complex. The binding sites of S. aureus proteins were assessed using Computer Atlas of Surface Topography of Proteins (CASTp) while docked with MHC I and CD8+ T-cells.

Results: Nine potential S. aureus peptides and their corresponding epitopes were identified in this study, stimulating cytotoxic T-cell mediated immunity. The peptides were analyzed for similarity with self-antigens and allergenicity. 1d20, 2noj, 1n67, 1nu7, 1amx, and 2b71, non-self and stable, are potential elicitors of the cytotoxic T-cell response. The energy values from docking simulations of peptide-MHC I complexes with the CD8+ and T-cell receptor (TCR) indicate the stability and strength of the formed complexes. These peptides – 2noj, 1d20, 1n67, 2b71, 1nu7, 1yn3, 1amx, 2gi9, and 1edk – demonstrated robust MHC I binding, as evidenced by their low binding energies. Peptide 2gi9 exhibited the lowest energy value, followed by 2noj, 1nu7, 1n67, and 1d20, when docked with MHC I and CD8 + TCR, suggesting a highly stable complex. CASTp analysis indicated substantial binding pockets in the docked complexes, with peptide 1d20 showing the highest values for area and volume, suggesting its potential as an effective elicitor of immunological responses. These peptides – 2noj, 2gi9, 1d20, and 1n67 – stand out for vaccine development and T-cell activation against S. aureus.

Conclusion: This study sheds light on the design and development of S. aureus vaccines, highlighting the significance of employing computational methods in conjunction with experimental verification. The significance of T-cell responses in combating S. aureus infections is emphasized by this study. More experiments are needed to confirm the effectiveness of these vaccine candidates and discover their possible medical uses.

Keywords: autologous Staphylococcus lysate therapy, CD8+ T-cell immunity, computational tools, epitopes, immunoinformatics, immunological responses, major histocompatibility complex class I binding epitopes, molecular docking simulations, Staphylococcus aureus, vaccine development.

Research paper thumbnail of Immunoinformatic prediction to identify Staphylococcus aureus peptides that bind to CD8+ T-cells as potential vaccine candidates

Veterinary World, Jun 28, 2024

Background and Aim: Staphylococcus aureus, with its diverse virulence factors and immune response... more Background and Aim: Staphylococcus aureus, with its diverse virulence factors and immune response evasion mechanisms, presents a formidable challenge as an opportunistic pathogen. Developing an effective vaccine against S. aureus has proven elusive despite extensive efforts. Autologous Staphylococcus lysate (ASL) treatment has proven effective in triggering an immune response against bovine mastitis. Peptides that stimulate the immune response can be the subject of further research. The study aimed to use immunoinformatics tools to identify epitopes on S. aureus surface and secretory proteins that can bind to major histocompatibility complex class I (MHC I) and CD8+ T-cells. This method aids in discovering prospective vaccine candidates and elucidating the rationale behind ASL therapy’s efficacy.

Materials and Methods: Proteins were identified using both literature search and the National Center for Biotechnology Information search engine Entrez. Self and non-self peptides, allergenicity predictions, epitope locations, and physicochemical characteristics were determined using sequence alignment, AllerTOP, SVMTriP, and Protein-Sol tools. Hex was employed for simulating the docking interactions between S. aureus proteins and the MHC I + CD8+ T-cells complex. The binding sites of S. aureus proteins were assessed using Computer Atlas of Surface Topography of Proteins (CASTp) while docked with MHC I and CD8+ T-cells.

Results: Nine potential S. aureus peptides and their corresponding epitopes were identified in this study, stimulating cytotoxic T-cell mediated immunity. The peptides were analyzed for similarity with self-antigens and allergenicity. 1d20, 2noj, 1n67, 1nu7, 1amx, and 2b71, non-self and stable, are potential elicitors of the cytotoxic T-cell response. The energy values from docking simulations of peptide-MHC I complexes with the CD8+ and T-cell receptor (TCR) indicate the stability and strength of the formed complexes. These peptides – 2noj, 1d20, 1n67, 2b71, 1nu7, 1yn3, 1amx, 2gi9, and 1edk – demonstrated robust MHC I binding, as evidenced by their low binding energies. Peptide 2gi9 exhibited the lowest energy value, followed by 2noj, 1nu7, 1n67, and 1d20, when docked with MHC I and CD8 + TCR, suggesting a highly stable complex. CASTp analysis indicated substantial binding pockets in the docked complexes, with peptide 1d20 showing the highest values for area and volume, suggesting its potential as an effective elicitor of immunological responses. These peptides – 2noj, 2gi9, 1d20, and 1n67 – stand out for vaccine development and T-cell activation against S. aureus.

Conclusion: This study sheds light on the design and development of S. aureus vaccines, highlighting the significance of employing computational methods in conjunction with experimental verification. The significance of T-cell responses in combating S. aureus infections is emphasized by this study. More experiments are needed to confirm the effectiveness of these vaccine candidates and discover their possible medical uses.

Keywords: autologous Staphylococcus lysate therapy, CD8+ T-cell immunity, computational tools, epitopes, immunoinformatics, immunological responses, major histocompatibility complex class I binding epitopes, molecular docking simulations, Staphylococcus aureus, vaccine development.