Kedron Silsbee - Academia.edu (original) (raw)
Uploads
Papers by Kedron Silsbee
Monthly Notices of the Royal Astronomical Society
Observations of gaseous complex organic molecules (COMs) in cold starless and prestellar cloud co... more Observations of gaseous complex organic molecules (COMs) in cold starless and prestellar cloud cores require efficient desorption of the COMs and their parent species from icy mantles on interstellar grains. With a simple astrochemical model, we investigate if mechanical removal of ice fragments in oblique collisions between grains in two size bins (0.01 and 0.1 µm) can substantially affect COM abundances. Two grain collision velocities were considered – 10 and 50 m s−1, corresponding to realistic grain relative speeds arising from ambipolar diffusion and turbulence, respectively. From the smaller grains, the collisions are assumed to remove a spherical cap with height equal to 1/3 and 1 ice mantle thickness, respectively. We find that the turbulence-induced desorption can elevate the gas-phase abundances of COMs by several orders of magnitude, reproducing observed COM abundances within an order of magnitude. Importantly, the high gaseous COM abundances are attained for long time-sc...
Monthly Notices of the Royal Astronomical Society
Observations of gaseous complex organic molecules (COMs) in cold starless and prestellar cloud co... more Observations of gaseous complex organic molecules (COMs) in cold starless and prestellar cloud cores require efficient desorption of the COMs and their parent species from icy mantles on interstellar grains. With a simple astrochemical model, we investigate if mechanical removal of ice fragments in oblique collisions between grains in two size bins (0.01 and 0.1 µm) can substantially affect COM abundances. Two grain collision velocities were considered – 10 and 50 m s−1, corresponding to realistic grain relative speeds arising from ambipolar diffusion and turbulence, respectively. From the smaller grains, the collisions are assumed to remove a spherical cap with height equal to 1/3 and 1 ice mantle thickness, respectively. We find that the turbulence-induced desorption can elevate the gas-phase abundances of COMs by several orders of magnitude, reproducing observed COM abundances within an order of magnitude. Importantly, the high gaseous COM abundances are attained for long time-sc...