Kendra Shrestha - Academia.edu (original) (raw)
Uploads
Papers by Kendra Shrestha
Physics of Fluids
Spray atomization process involves complex multi-phase phenomena. Abundant literature and validat... more Spray atomization process involves complex multi-phase phenomena. Abundant literature and validation of spray modeling for industrial applications like fuel injection in internal combustion and turbine jet engines are available. However, only a handful of studies, primarily limited to discrete phase modeling, of low-pressure applications, such as nasal spray exists. This study aims to provide insight into the external and near-nozzle spray characterization of a continuous spray and establishes good validation against the experiment. A three-dimensional (3D) x-ray scanner was used to extract the internal nasal spray nozzle geometry which was reconstructed to build a 3D computational model. A novel volume-of-fluid to discrete phase transition model was used to track the liquid phase and its transition to droplets, which was based on the shape and size of the liquid lumps. In this study, an early pre-stable and stable phase of spray plume development was investigated. Qualitative and q...
Experimental and Computational Multiphase Flow, 2021
For various sinonasal conditions, including chronic rhinosinusitis, saline irrigation is an accep... more For various sinonasal conditions, including chronic rhinosinusitis, saline irrigation is an accepted standard-of-care treatment. This study was aimed at determining the effect of increased irrigation volumes and greater squeeze force on mucosal irrigation. A sinonasal cavity computational model was reconstructed from high-resolution CT scans of a healthy, unoperated 25-year old female. Seven combinations of irrigation volumes (70, 150, 200, and 400 mL) and squeeze forces (ramp time 0.1, 0.5, and 1.0 s) at a fixed head tilt of 0 degrees to the horizontal (Frankfort position) were performed. Velocity, pressure, and wall shear stress, together with mapping of surface coverage and residual volumes at specific locations and time were demonstrated. Higher volume irrigation (400 mL) and greater squeeze force (ramp time 0.1 s) improved irrigation coverage on the ipsilateral and contralateral sinonasal surfaces and increased shear force (approximately 140 Pa). An increase in irrigation volume from 70 to 150 mL approximately doubled sinus surface coverage and from 70 to 200 mL tripled sinus surface coverage. A faster squeeze also contributed to increased sinus surface coverage but its effect was less influential. We infer that the greater irrigation volume and squeeze force improve therapeutic benefit in terms of lavage and distribution of topical medications.
Journal of Aerosol Science, 2022
This chapter provides the latest research trends in applications of CFD for investigating nasal d... more This chapter provides the latest research trends in applications of CFD for investigating nasal drug delivery. Contributions include research and outcomes from the regulatory body, US Food Drug Administration on recent projects. Additionally, the chapter showcases the application of multiphase flow for capturing nasal spray drug delivery for improving olfactory targeting for nose-to-brain drug delivery, and nasal irrigation targeting the sinuses.
Journal of Biomechanics, 2021
Nasal irrigation is a widely recognized treatment for several sinonasal diseases. However, there ... more Nasal irrigation is a widely recognized treatment for several sinonasal diseases. However, there is a lack of clear evidence-based guidelines for optimal irrigation delivery to improve lavage and topical drug delivery. This study uses computational fluid dynamics (CFD) to assess the effects of different head tilt positions on sinonasal coverage, residence time and shear stresses in squeeze-bottle nasal irrigation. A sinonasal cavity computational model was constructed from a high-resolution CT scan of a healthy, 25-year-old Asian female. The Volume of Fluid method was used to track the interface between the two immiscible fluids (air and water). The direction of gravity was varied to simulate different head tilt-positions (0° Straight, 45° Forward, 45° Left, 45° Right and 45° Backward) during nasal irrigation with 150 mL liquid via a squeeze bottle through the left nostril for 2 s with a 0.1 s acceleration/deceleration time. The results showed that the 45° backward head tilt position was the most effective in delivering irrigation to the ethmoid, frontal and sphenoid sinuses. Altering head tilt had minimal impact on irrigation delivery to the maxillary sinuses. Maximum wall shear stresses seen in localized areas of the sinus mucosa varied significantly with different head tilt angles. However, the difference in mean wall shear stress on the sinus surfaces was marginal with changing head tilt position. The findings suggest that an optimized head tilt position can be identified to improve liquid irrigation to targeted sinuses, as per treatment requirements (lavage and topical drug delivery).
Physics of Fluids, 2021
Airflow through the nasal cavity exhibits a wide variety of fluid dynamic behaviors due to the in... more Airflow through the nasal cavity exhibits a wide variety of fluid dynamic behaviors due to the intricacy of the nasal geometry. The flow is naturally unsteady and perhaps turbulent, despite Computational Fluid Dynamics (CFD) in the literature being assumed as having a steady laminar flow. Time-dependent simulations can be used to generate detailed data with the potential to uncover new flow behavior, although they are more computationally intensive than steady-state simulations. Furthermore, verification of CFD results has relied on a reported pressure drop (e.g., nasal resistance) across the nasal airway although the geometries used are different. This study investigated the unsteady nature of inhalation at flow rates of 10 l/min, 15 l/min, 20 l/min, and 30 l/min. A scale resolving CFD simulation using a hybrid Reynolds-averaged Navier–Stokes--large eddy simulation model was used and compared with experimental measurements of the pressure distribution and the overall pressure drop ...
PLOS ONE, 2020
The persistence of global current account imbalances in the last decade has highlighted the impor... more The persistence of global current account imbalances in the last decade has highlighted the importance of examining and understanding the causes of imbalances. Although generally studied as a macroeconomic phenomenon, changes to the current account may have effects on the microeconomy that warrant examination. This paper uses an applied microeconomic general equilibrium model to examine changes to current account imbalances existing between the U.S. and China. The microeconomic effects of a rebalancing of domestic demand in China that lessens the current account surplus and generates a real appreciation of the renminbi are analyzed. The U.S. current account deficit narrows in response to the real appreciation of the renminbi, but the economy contracts by a small amount. Further analysis demonstrates a reduction in the rate of consumption in the U.S. also results in a narrowing of the current account deficit and suggests that consumption fuels both the current account deficit and economic growth. The analysis has implications for global current account imbalances, as the importance of domestic structural adjustments in reducing imbalances is highlighted.
Computers in Biology and Medicine, 2019
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Diesel Engine has been the most powerful and relevant source of power in the automobile industryf... more Diesel Engine has been the most powerful and relevant source of power in the automobile industryfor decades due to their excellent performance, efficiency and power. On the contrary, there arenumer ...
Physics of Fluids
Spray atomization process involves complex multi-phase phenomena. Abundant literature and validat... more Spray atomization process involves complex multi-phase phenomena. Abundant literature and validation of spray modeling for industrial applications like fuel injection in internal combustion and turbine jet engines are available. However, only a handful of studies, primarily limited to discrete phase modeling, of low-pressure applications, such as nasal spray exists. This study aims to provide insight into the external and near-nozzle spray characterization of a continuous spray and establishes good validation against the experiment. A three-dimensional (3D) x-ray scanner was used to extract the internal nasal spray nozzle geometry which was reconstructed to build a 3D computational model. A novel volume-of-fluid to discrete phase transition model was used to track the liquid phase and its transition to droplets, which was based on the shape and size of the liquid lumps. In this study, an early pre-stable and stable phase of spray plume development was investigated. Qualitative and q...
Experimental and Computational Multiphase Flow, 2021
For various sinonasal conditions, including chronic rhinosinusitis, saline irrigation is an accep... more For various sinonasal conditions, including chronic rhinosinusitis, saline irrigation is an accepted standard-of-care treatment. This study was aimed at determining the effect of increased irrigation volumes and greater squeeze force on mucosal irrigation. A sinonasal cavity computational model was reconstructed from high-resolution CT scans of a healthy, unoperated 25-year old female. Seven combinations of irrigation volumes (70, 150, 200, and 400 mL) and squeeze forces (ramp time 0.1, 0.5, and 1.0 s) at a fixed head tilt of 0 degrees to the horizontal (Frankfort position) were performed. Velocity, pressure, and wall shear stress, together with mapping of surface coverage and residual volumes at specific locations and time were demonstrated. Higher volume irrigation (400 mL) and greater squeeze force (ramp time 0.1 s) improved irrigation coverage on the ipsilateral and contralateral sinonasal surfaces and increased shear force (approximately 140 Pa). An increase in irrigation volume from 70 to 150 mL approximately doubled sinus surface coverage and from 70 to 200 mL tripled sinus surface coverage. A faster squeeze also contributed to increased sinus surface coverage but its effect was less influential. We infer that the greater irrigation volume and squeeze force improve therapeutic benefit in terms of lavage and distribution of topical medications.
Journal of Aerosol Science, 2022
This chapter provides the latest research trends in applications of CFD for investigating nasal d... more This chapter provides the latest research trends in applications of CFD for investigating nasal drug delivery. Contributions include research and outcomes from the regulatory body, US Food Drug Administration on recent projects. Additionally, the chapter showcases the application of multiphase flow for capturing nasal spray drug delivery for improving olfactory targeting for nose-to-brain drug delivery, and nasal irrigation targeting the sinuses.
Journal of Biomechanics, 2021
Nasal irrigation is a widely recognized treatment for several sinonasal diseases. However, there ... more Nasal irrigation is a widely recognized treatment for several sinonasal diseases. However, there is a lack of clear evidence-based guidelines for optimal irrigation delivery to improve lavage and topical drug delivery. This study uses computational fluid dynamics (CFD) to assess the effects of different head tilt positions on sinonasal coverage, residence time and shear stresses in squeeze-bottle nasal irrigation. A sinonasal cavity computational model was constructed from a high-resolution CT scan of a healthy, 25-year-old Asian female. The Volume of Fluid method was used to track the interface between the two immiscible fluids (air and water). The direction of gravity was varied to simulate different head tilt-positions (0° Straight, 45° Forward, 45° Left, 45° Right and 45° Backward) during nasal irrigation with 150 mL liquid via a squeeze bottle through the left nostril for 2 s with a 0.1 s acceleration/deceleration time. The results showed that the 45° backward head tilt position was the most effective in delivering irrigation to the ethmoid, frontal and sphenoid sinuses. Altering head tilt had minimal impact on irrigation delivery to the maxillary sinuses. Maximum wall shear stresses seen in localized areas of the sinus mucosa varied significantly with different head tilt angles. However, the difference in mean wall shear stress on the sinus surfaces was marginal with changing head tilt position. The findings suggest that an optimized head tilt position can be identified to improve liquid irrigation to targeted sinuses, as per treatment requirements (lavage and topical drug delivery).
Physics of Fluids, 2021
Airflow through the nasal cavity exhibits a wide variety of fluid dynamic behaviors due to the in... more Airflow through the nasal cavity exhibits a wide variety of fluid dynamic behaviors due to the intricacy of the nasal geometry. The flow is naturally unsteady and perhaps turbulent, despite Computational Fluid Dynamics (CFD) in the literature being assumed as having a steady laminar flow. Time-dependent simulations can be used to generate detailed data with the potential to uncover new flow behavior, although they are more computationally intensive than steady-state simulations. Furthermore, verification of CFD results has relied on a reported pressure drop (e.g., nasal resistance) across the nasal airway although the geometries used are different. This study investigated the unsteady nature of inhalation at flow rates of 10 l/min, 15 l/min, 20 l/min, and 30 l/min. A scale resolving CFD simulation using a hybrid Reynolds-averaged Navier–Stokes--large eddy simulation model was used and compared with experimental measurements of the pressure distribution and the overall pressure drop ...
PLOS ONE, 2020
The persistence of global current account imbalances in the last decade has highlighted the impor... more The persistence of global current account imbalances in the last decade has highlighted the importance of examining and understanding the causes of imbalances. Although generally studied as a macroeconomic phenomenon, changes to the current account may have effects on the microeconomy that warrant examination. This paper uses an applied microeconomic general equilibrium model to examine changes to current account imbalances existing between the U.S. and China. The microeconomic effects of a rebalancing of domestic demand in China that lessens the current account surplus and generates a real appreciation of the renminbi are analyzed. The U.S. current account deficit narrows in response to the real appreciation of the renminbi, but the economy contracts by a small amount. Further analysis demonstrates a reduction in the rate of consumption in the U.S. also results in a narrowing of the current account deficit and suggests that consumption fuels both the current account deficit and economic growth. The analysis has implications for global current account imbalances, as the importance of domestic structural adjustments in reducing imbalances is highlighted.
Computers in Biology and Medicine, 2019
This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad... more This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Diesel Engine has been the most powerful and relevant source of power in the automobile industryf... more Diesel Engine has been the most powerful and relevant source of power in the automobile industryfor decades due to their excellent performance, efficiency and power. On the contrary, there arenumer ...