Kieran Rimmer - Academia.edu (original) (raw)
Papers by Kieran Rimmer
Angewandte Chemie (International ed. in English), Jan 30, 2014
The thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the ... more The thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the periplasm of Gram-negative bacteria. DsbA substrates include proteins involved in bacterial virulence. In the absence of DsbA, many of these proteins do not fold correctly, which renders the bacteria avirulent. Thus DsbA is a critical mediator of virulence and inhibitors may act as antivirulence agents. Biophysical screening has been employed to identify fragments that bind to DsbA from Escherichia coli. Elaboration of one of these fragments produced compounds that inhibit DsbA activity in vitro. In cell-based assays, the compounds inhibit bacterial motility, but have no effect on growth in liquid culture, which is consistent with selective inhibition of DsbA. Crystal structures of inhibitors bound to DsbA indicate that they bind adjacent to the active site. Together, the data suggest that DsbA may be amenable to the development of novel antibacterial compounds that act by inhibiting bac...
PLoS ONE, 2013
Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified ... more Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified as targets for antivirulence drugs. However, DsbA enzymes characterized to date exhibit a wide spectrum of redox properties and divergent structural features compared to the prototypical DsbA enzyme of Escherichia coli DsbA (EcDsbA). Nonetheless, sequence analysis shows that DsbAs are more highly conserved than their known substrate virulence factors, highlighting the potential to inhibit virulence across a range of organisms by targeting DsbA. For example, Salmonella enterica typhimurium (SeDsbA, 86 % sequence identity to EcDsbA) shares almost identical structural, surface and redox properties. Using comparative sequence and structure analysis we predicted that five other bacterial DsbAs would share these properties. To confirm this, we characterized Klebsiella pneumoniae DsbA (KpDsbA, 81 % identity to EcDsbA). As expected, the redox properties, structure and surface features (from crystal and NMR data) of KpDsbA were almost identical to those of EcDsbA and SeDsbA. Moreover, KpDsbA and EcDsbA bind peptides derived from their respective DsbBs with almost equal affinity, supporting the notion that compounds designed to inhibit EcDsbA will also inhibit KpDsbA. Taken together, our data show that DsbAs fall into different classes; that DsbAs within a class may be predicted by sequence analysis of binding loops; that DsbAs within a class are able to complement one another in vivo and that compounds designed to inhibit EcDsbA are likely to inhibit DsbAs within the same class.
Acta Crystallographica Section D Biological Crystallography, 2012
The enzyme TcpG is a periplasmic protein produced by the Gram-negative pathogen Vibrio cholerae. ... more The enzyme TcpG is a periplasmic protein produced by the Gram-negative pathogen Vibrio cholerae. TcpG is essential for the production of ToxR-regulated proteins, including virulence-factor pilus proteins and cholera toxin, and is therefore a target for the development of a new class of anti-virulence drugs. Here, the 1.2 Å resolution crystal structure of TcpG is reported using a cryocooled crystal. This structure is compared with a previous crystal structure determined at 2.1 Å resolution from data measured at room temperature. The new crystal structure is the first DsbA crystal structure to be solved at a sufficiently high resolution to allow the inclusion of refined H atoms in the model. The redox properties of TcpG are also reported, allowing comparison of its oxidoreductase activity with those of other DSB proteins. One of the defining features of the Escherichia coli DsbA enzyme is its destabilizing disulfide, and this is also present in TcpG. The data presented here provide new insights into the structure and redox properties of this enzyme, showing that the binding mode identified between E. coli DsbB and DsbA is likely to be conserved in TcpG and that the β5-α7 loop near the proposed DsbB binding site is flexible, and suggesting that the tense oxidized conformation of TcpG may be the consequence of a short contact at the active site that is induced by disulfide formation and is relieved by reduction.
Journal of Molecular Biology, 2009
Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1–NmDsbA3) that are vital for th... more Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1–NmDsbA3) that are vital for the oxidative folding of many membrane and secreted proteins, and these three enzymes are considered to exhibit different substrate specificities. This has led to the suggestion that each N. meningitidis DsbA (NmDsbA) may play a specialized role in different stages of pathogenesis; however, the molecular and structural bases of the different roles of NmDsbAs are unclear. With the aim of determining the molecular basis for substrate specificity and how this correlates to pathogenesis, we undertook a biochemical and structural characterization of the three NmDsbAs. We report the 2.0-Å-resolution crystal structure of the oxidized form of NmDsbA1, which adopted a canonical DsbA fold similar to that observed in the structures of NmDsbA3 and Escherichia coli DsbA (EcDsbA). Structural comparisons revealed variations around the active site and candidate peptide-binding region. Additionally, we demonstrate that all three NmDsbAs are strong oxidases with similar redox potentials; however, they differ from EcDsbA in their ability to be reoxidized by E. coli DsbB. Collectively, our studies suggest that the small structural differences between the NmDsbA enzymes and EcDsbA are functionally significant and are the likely determinants of substrate specificity.
Protein Expression and Purification, 2010
A human peroxisome proliferator-activated receptor alpha ligand binding domain (PPARαLBD)-maltose... more A human peroxisome proliferator-activated receptor alpha ligand binding domain (PPARαLBD)-maltose binding protein fusion construct was expressed in Escherichia coli. A codon optimized DNA sequence encoding human PPARαLBD (aa196–468) was synthesized and ligated into the pDEST17 E. coli expression vector downstream of a MBP solubility fusion tag and an intermittent TEV protease cleavage site. Following auto-induction at 28 °C, PPARαLBD protein was purified to electrophoretic homogeneity by a nickel affinity chromatographic step, on-column TEV protease cleavage followed by Sephacryl S200 size exclusion chromatography. The recombinant protein displayed cross-reactivity with goat anti-(human PPARα) polyclonal antibody and was identified as human PPARα by trypic peptide mass finger-printing. The addition of a PPARα specific ligand (fenofibric acid, GW7647 or GW590735) to the growth media significantly stabilized the PPARαLBD structure and enhanced the expression of soluble protein. In-cell ligand binding was examined by monitoring the enhancement of PPARαLBD expression as a function of the concentration of ligand in the growth media. The efficient expression and in-cell assay of the reported PPARαLBD construct make it amenable to high through-put screening assays in drug discovery programs.
Molecular Endocrinology, 2005
The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination,... more The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, as mutations in SRY can cause XY sex reversal. Although some SRY missense mutations affect DNA binding and bending activities, it is unclear how others contribute to disease. The high mobility group domain of SRY has two nuclear localization signals (NLS). Sex-reversing mutations in the NLSs affect nuclear import in some patients, associated with defective importin- binding to the C-terminal NLS (c-NLS), whereas in others, importin- recognition is normal, suggesting the existence of an importin--independent nuclear import pathway.
Plant Physiology and Biochemistry, 2008
Proteins destined for the mitochondria required the evolution of specific and efficient molecular... more Proteins destined for the mitochondria required the evolution of specific and efficient molecular machinery for protein import. The subunits of the import translocases of the inner membrane (TIM) appear homologous and conserved amongst species, however the components of the translocase of the outer membrane (TOM) show extensive differences between species. Recently, bioinformatic and structural analysis of Tom20, an important receptor subunit of the TOM complex, suggests that this protein complex arose from different ancestors for plants compared to animals and fungi, but has subsequently converged to provide similar functions and analogous structures. Here we review the current knowledge of the TOM complex, the function and structure of the various subunits that make up this molecular machine.
Febs Letters, 2007
The AMP-activated protein kinase (AMPK) contains a carbohydrate-binding module (β1-CBM) that is c... more The AMP-activated protein kinase (AMPK) contains a carbohydrate-binding module (β1-CBM) that is conserved from yeast to mammals. β1-CBM has been shown to localize AMPK to glycogen in intact cells and in vitro. Here we use Nuclear Magnetic Resonance spectroscopy to investigate oligosaccharide binding to 15N labelled β1-CBM. We find that β1-CBM shows greatest affinity to carbohydrates of greater than five glucose units joined via α,1 → 4 glycosidic linkages with a single, but not multiple, glucose units in an α,1 → 6 branch. The near identical chemical shift profile for all oligosaccharides whether cyclic or linear suggest a similar binding conformation and confirms the presence of a single carbohydrate-binding site.
Journal of Molecular Biology, 2011
The Tom20 and Tom22 receptor subunits of the TOM (translocase of the outer mitochondrial membrane... more The Tom20 and Tom22 receptor subunits of the TOM (translocase of the outer mitochondrial membrane) complex recognize N-terminal presequences of proteins that are to be imported into the mitochondrion. In plants, Tom20 is C-terminally anchored in the mitochondrial membrane, whereas Tom20 is N-terminally anchored in animals and fungi. Furthermore, the cytosolic domain of Tom22 in plants is smaller than its animal/fungal counterpart and contains fewer acidic residues. Here, NMR spectroscopy was used to explore presequence interactions with the cytosolic regions of receptors from the plant Arabidopsis thaliana and the fungus Saccharomyces cerevisiae (i.e., AtTom20, AtTom22, and ScTom22). It was found that AtTom20 possesses a discontinuous bidentate hydrophobic binding site for presequences. The presequences on plant mitochondrial proteins comprise two or more hydrophobic binding regions to match this bidentate site. NMR data suggested that while these presequences bind to ScTom22, they do not bind to AtTom22. AtTom22, however, binds to AtTom20 at the same binding site as presequences, suggesting that this domain competes with the presequences of imported proteins, thereby enabling their progression along the import pathway.
Angewandte Chemie (International ed. in English), Jan 30, 2014
The thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the ... more The thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the periplasm of Gram-negative bacteria. DsbA substrates include proteins involved in bacterial virulence. In the absence of DsbA, many of these proteins do not fold correctly, which renders the bacteria avirulent. Thus DsbA is a critical mediator of virulence and inhibitors may act as antivirulence agents. Biophysical screening has been employed to identify fragments that bind to DsbA from Escherichia coli. Elaboration of one of these fragments produced compounds that inhibit DsbA activity in vitro. In cell-based assays, the compounds inhibit bacterial motility, but have no effect on growth in liquid culture, which is consistent with selective inhibition of DsbA. Crystal structures of inhibitors bound to DsbA indicate that they bind adjacent to the active site. Together, the data suggest that DsbA may be amenable to the development of novel antibacterial compounds that act by inhibiting bac...
PLoS ONE, 2013
Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified ... more Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified as targets for antivirulence drugs. However, DsbA enzymes characterized to date exhibit a wide spectrum of redox properties and divergent structural features compared to the prototypical DsbA enzyme of Escherichia coli DsbA (EcDsbA). Nonetheless, sequence analysis shows that DsbAs are more highly conserved than their known substrate virulence factors, highlighting the potential to inhibit virulence across a range of organisms by targeting DsbA. For example, Salmonella enterica typhimurium (SeDsbA, 86 % sequence identity to EcDsbA) shares almost identical structural, surface and redox properties. Using comparative sequence and structure analysis we predicted that five other bacterial DsbAs would share these properties. To confirm this, we characterized Klebsiella pneumoniae DsbA (KpDsbA, 81 % identity to EcDsbA). As expected, the redox properties, structure and surface features (from crystal and NMR data) of KpDsbA were almost identical to those of EcDsbA and SeDsbA. Moreover, KpDsbA and EcDsbA bind peptides derived from their respective DsbBs with almost equal affinity, supporting the notion that compounds designed to inhibit EcDsbA will also inhibit KpDsbA. Taken together, our data show that DsbAs fall into different classes; that DsbAs within a class may be predicted by sequence analysis of binding loops; that DsbAs within a class are able to complement one another in vivo and that compounds designed to inhibit EcDsbA are likely to inhibit DsbAs within the same class.
Acta Crystallographica Section D Biological Crystallography, 2012
The enzyme TcpG is a periplasmic protein produced by the Gram-negative pathogen Vibrio cholerae. ... more The enzyme TcpG is a periplasmic protein produced by the Gram-negative pathogen Vibrio cholerae. TcpG is essential for the production of ToxR-regulated proteins, including virulence-factor pilus proteins and cholera toxin, and is therefore a target for the development of a new class of anti-virulence drugs. Here, the 1.2 Å resolution crystal structure of TcpG is reported using a cryocooled crystal. This structure is compared with a previous crystal structure determined at 2.1 Å resolution from data measured at room temperature. The new crystal structure is the first DsbA crystal structure to be solved at a sufficiently high resolution to allow the inclusion of refined H atoms in the model. The redox properties of TcpG are also reported, allowing comparison of its oxidoreductase activity with those of other DSB proteins. One of the defining features of the Escherichia coli DsbA enzyme is its destabilizing disulfide, and this is also present in TcpG. The data presented here provide new insights into the structure and redox properties of this enzyme, showing that the binding mode identified between E. coli DsbB and DsbA is likely to be conserved in TcpG and that the β5-α7 loop near the proposed DsbB binding site is flexible, and suggesting that the tense oxidized conformation of TcpG may be the consequence of a short contact at the active site that is induced by disulfide formation and is relieved by reduction.
Journal of Molecular Biology, 2009
Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1–NmDsbA3) that are vital for th... more Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1–NmDsbA3) that are vital for the oxidative folding of many membrane and secreted proteins, and these three enzymes are considered to exhibit different substrate specificities. This has led to the suggestion that each N. meningitidis DsbA (NmDsbA) may play a specialized role in different stages of pathogenesis; however, the molecular and structural bases of the different roles of NmDsbAs are unclear. With the aim of determining the molecular basis for substrate specificity and how this correlates to pathogenesis, we undertook a biochemical and structural characterization of the three NmDsbAs. We report the 2.0-Å-resolution crystal structure of the oxidized form of NmDsbA1, which adopted a canonical DsbA fold similar to that observed in the structures of NmDsbA3 and Escherichia coli DsbA (EcDsbA). Structural comparisons revealed variations around the active site and candidate peptide-binding region. Additionally, we demonstrate that all three NmDsbAs are strong oxidases with similar redox potentials; however, they differ from EcDsbA in their ability to be reoxidized by E. coli DsbB. Collectively, our studies suggest that the small structural differences between the NmDsbA enzymes and EcDsbA are functionally significant and are the likely determinants of substrate specificity.
Protein Expression and Purification, 2010
A human peroxisome proliferator-activated receptor alpha ligand binding domain (PPARαLBD)-maltose... more A human peroxisome proliferator-activated receptor alpha ligand binding domain (PPARαLBD)-maltose binding protein fusion construct was expressed in Escherichia coli. A codon optimized DNA sequence encoding human PPARαLBD (aa196–468) was synthesized and ligated into the pDEST17 E. coli expression vector downstream of a MBP solubility fusion tag and an intermittent TEV protease cleavage site. Following auto-induction at 28 °C, PPARαLBD protein was purified to electrophoretic homogeneity by a nickel affinity chromatographic step, on-column TEV protease cleavage followed by Sephacryl S200 size exclusion chromatography. The recombinant protein displayed cross-reactivity with goat anti-(human PPARα) polyclonal antibody and was identified as human PPARα by trypic peptide mass finger-printing. The addition of a PPARα specific ligand (fenofibric acid, GW7647 or GW590735) to the growth media significantly stabilized the PPARαLBD structure and enhanced the expression of soluble protein. In-cell ligand binding was examined by monitoring the enhancement of PPARαLBD expression as a function of the concentration of ligand in the growth media. The efficient expression and in-cell assay of the reported PPARαLBD construct make it amenable to high through-put screening assays in drug discovery programs.
Molecular Endocrinology, 2005
The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination,... more The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, as mutations in SRY can cause XY sex reversal. Although some SRY missense mutations affect DNA binding and bending activities, it is unclear how others contribute to disease. The high mobility group domain of SRY has two nuclear localization signals (NLS). Sex-reversing mutations in the NLSs affect nuclear import in some patients, associated with defective importin- binding to the C-terminal NLS (c-NLS), whereas in others, importin- recognition is normal, suggesting the existence of an importin--independent nuclear import pathway.
Plant Physiology and Biochemistry, 2008
Proteins destined for the mitochondria required the evolution of specific and efficient molecular... more Proteins destined for the mitochondria required the evolution of specific and efficient molecular machinery for protein import. The subunits of the import translocases of the inner membrane (TIM) appear homologous and conserved amongst species, however the components of the translocase of the outer membrane (TOM) show extensive differences between species. Recently, bioinformatic and structural analysis of Tom20, an important receptor subunit of the TOM complex, suggests that this protein complex arose from different ancestors for plants compared to animals and fungi, but has subsequently converged to provide similar functions and analogous structures. Here we review the current knowledge of the TOM complex, the function and structure of the various subunits that make up this molecular machine.
Febs Letters, 2007
The AMP-activated protein kinase (AMPK) contains a carbohydrate-binding module (β1-CBM) that is c... more The AMP-activated protein kinase (AMPK) contains a carbohydrate-binding module (β1-CBM) that is conserved from yeast to mammals. β1-CBM has been shown to localize AMPK to glycogen in intact cells and in vitro. Here we use Nuclear Magnetic Resonance spectroscopy to investigate oligosaccharide binding to 15N labelled β1-CBM. We find that β1-CBM shows greatest affinity to carbohydrates of greater than five glucose units joined via α,1 → 4 glycosidic linkages with a single, but not multiple, glucose units in an α,1 → 6 branch. The near identical chemical shift profile for all oligosaccharides whether cyclic or linear suggest a similar binding conformation and confirms the presence of a single carbohydrate-binding site.
Journal of Molecular Biology, 2011
The Tom20 and Tom22 receptor subunits of the TOM (translocase of the outer mitochondrial membrane... more The Tom20 and Tom22 receptor subunits of the TOM (translocase of the outer mitochondrial membrane) complex recognize N-terminal presequences of proteins that are to be imported into the mitochondrion. In plants, Tom20 is C-terminally anchored in the mitochondrial membrane, whereas Tom20 is N-terminally anchored in animals and fungi. Furthermore, the cytosolic domain of Tom22 in plants is smaller than its animal/fungal counterpart and contains fewer acidic residues. Here, NMR spectroscopy was used to explore presequence interactions with the cytosolic regions of receptors from the plant Arabidopsis thaliana and the fungus Saccharomyces cerevisiae (i.e., AtTom20, AtTom22, and ScTom22). It was found that AtTom20 possesses a discontinuous bidentate hydrophobic binding site for presequences. The presequences on plant mitochondrial proteins comprise two or more hydrophobic binding regions to match this bidentate site. NMR data suggested that while these presequences bind to ScTom22, they do not bind to AtTom22. AtTom22, however, binds to AtTom20 at the same binding site as presequences, suggesting that this domain competes with the presequences of imported proteins, thereby enabling their progression along the import pathway.