Kim Ludwig - Academia.edu (original) (raw)

Papers by Kim Ludwig

Research paper thumbnail of The effects of yoga compared to active and inactive controls on physical function and health related quality of life in older adults- systematic review and meta-analysis of randomised controlled trials

International Journal of Behavioral Nutrition and Physical Activity

Background: Yoga has been recommended as a muscle strengthening and balance activity in national ... more Background: Yoga has been recommended as a muscle strengthening and balance activity in national and global physical activity guidelines. However, the evidence base establishing the effectiveness of yoga in improving physical function and health related quality of life (HRQoL) in an older adult population not recruited on the basis of any specific disease or condition, has not been systematically reviewed. The objective of this study was to synthesise existing evidence on the effects of yoga on physical function and HRQoL in older adults not characterised by any specific clinical condition. Methods: The following databases were systematically searched in September 2017: MEDLINE, PsycInfo, CINAHL Plus, Scopus, Web of Science, Cochrane Library, EMBASE, SPORTDiscus, AMED and ProQuest Dissertations & Theses Global. Study inclusion criteria: Older adult participants with mean age of 60 years and above, not recruited on the basis of any specific disease or condition; yoga intervention compared with inactive controls (example: wait-list control, education booklets) or active controls (example: walking, chair aerobics); physical function and HRQoL outcomes; and randomised/cluster randomised controlled trials published in English. A vote counting analysis and meta-analysis with standardised effect sizes (Hedges' g) computed using random effects models were conducted. Results: A total of 27 records from 22 RCTs were included (17 RCTs assessed physical function and 20 assessed HRQoL). The meta-analysis revealed significant effects (5% level of significance) favouring the yoga group for the following physical function outcomes compared with inactive controls: balance (effect size (ES) = 0.7), lower body flexibility (ES = 0.5), lower limb strength (ES = 0.45); compared with active controls: lower limb strength (ES = 0.49), lower body flexibility (ES = 0.28). For HRQoL, significant effects favouring yoga were found compared to inactive controls for: depression (ES = 0.64), perceived mental health (ES = 0.6), perceived physical health (ES = 0.61), sleep quality (ES = 0.65), and vitality (ES = 0.31); compared to active controls: depression (ES = 0.54).

Research paper thumbnail of The effects of yoga compared to active and inactive controls on physical function and health related quality of life in older adults- systematic review and meta-analysis of randomised controlled trials

International Journal of Behavioral Nutrition and Physical Activity

Background: Yoga has been recommended as a muscle strengthening and balance activity in national ... more Background: Yoga has been recommended as a muscle strengthening and balance activity in national and global physical activity guidelines. However, the evidence base establishing the effectiveness of yoga in improving physical function and health related quality of life (HRQoL) in an older adult population not recruited on the basis of any specific disease or condition, has not been systematically reviewed. The objective of this study was to synthesise existing evidence on the effects of yoga on physical function and HRQoL in older adults not characterised by any specific clinical condition. Methods: The following databases were systematically searched in September 2017: MEDLINE, PsycInfo, CINAHL Plus, Scopus, Web of Science, Cochrane Library, EMBASE, SPORTDiscus, AMED and ProQuest Dissertations & Theses Global. Study inclusion criteria: Older adult participants with mean age of 60 years and above, not recruited on the basis of any specific disease or condition; yoga intervention compared with inactive controls (example: wait-list control, education booklets) or active controls (example: walking, chair aerobics); physical function and HRQoL outcomes; and randomised/cluster randomised controlled trials published in English. A vote counting analysis and meta-analysis with standardised effect sizes (Hedges' g) computed using random effects models were conducted. Results: A total of 27 records from 22 RCTs were included (17 RCTs assessed physical function and 20 assessed HRQoL). The meta-analysis revealed significant effects (5% level of significance) favouring the yoga group for the following physical function outcomes compared with inactive controls: balance (effect size (ES) = 0.7), lower body flexibility (ES = 0.5), lower limb strength (ES = 0.45); compared with active controls: lower limb strength (ES = 0.49), lower body flexibility (ES = 0.28). For HRQoL, significant effects favouring yoga were found compared to inactive controls for: depression (ES = 0.64), perceived mental health (ES = 0.6), perceived physical health (ES = 0.61), sleep quality (ES = 0.65), and vitality (ES = 0.31); compared to active controls: depression (ES = 0.54).