Tomasz Kotwicki - Academia.edu (original) (raw)
Uploads
Papers by Tomasz Kotwicki
Symmetry, 2016
Morphological analysis of the scoliotic spine is based on two-dimensional X-rays: coronal and sag... more Morphological analysis of the scoliotic spine is based on two-dimensional X-rays: coronal and sagittal. The three-dimensional character of scoliosis has raised the necessity for analyzing scoliosis in three planes. We proposed a new user-friendly method of graphical presentation of the spine in the third plane-the Spine Axial Presentation (SAP). Eighty-five vertebrae of patients with scoliosis were analyzed. Due to different positions during X-rays (standing) and computer tomography (CT) (supine), the corresponding measurements cannot be directly compared. As a solution, a software creating Digital Reconstructed Radiographs (DRRs) from CT scans was developed to replace regular X-rays with DRRs. Based on the measurements performed on DRRs, the coordinates of vertebral bodies central points were defined. Next, the geometrical centers of vertebral bodies were determined on CT scans. The reproducibility of measurements was tested with Intraclass Correlation Coefficient (ICC), using p = 0.05. The intra-observer reproducibility and inter-observer reliability for vertebral body central point's coordinates (x, y, z) were high for results obtained based on DRRs and CT scans, as well as for comparison results obtained based on DRR and CT scans. Based on two standard radiographs, it is possible to localize vertebral bodies in 3D space. The position of vertebral bodies can be present in the Spine Axial Presentation.
Symmetry, 2016
Morphological analysis of the scoliotic spine is based on two-dimensional X-rays: coronal and sag... more Morphological analysis of the scoliotic spine is based on two-dimensional X-rays: coronal and sagittal. The three-dimensional character of scoliosis has raised the necessity for analyzing scoliosis in three planes. We proposed a new user-friendly method of graphical presentation of the spine in the third plane-the Spine Axial Presentation (SAP). Eighty-five vertebrae of patients with scoliosis were analyzed. Due to different positions during X-rays (standing) and computer tomography (CT) (supine), the corresponding measurements cannot be directly compared. As a solution, a software creating Digital Reconstructed Radiographs (DRRs) from CT scans was developed to replace regular X-rays with DRRs. Based on the measurements performed on DRRs, the coordinates of vertebral bodies central points were defined. Next, the geometrical centers of vertebral bodies were determined on CT scans. The reproducibility of measurements was tested with Intraclass Correlation Coefficient (ICC), using p = 0.05. The intra-observer reproducibility and inter-observer reliability for vertebral body central point's coordinates (x, y, z) were high for results obtained based on DRRs and CT scans, as well as for comparison results obtained based on DRR and CT scans. Based on two standard radiographs, it is possible to localize vertebral bodies in 3D space. The position of vertebral bodies can be present in the Spine Axial Presentation.