Līga Grase - Academia.edu (original) (raw)
Uploads
Papers by Līga Grase
Key Engineering Materials, 2018
The aim of this study is to show the possibility to control structural and optical properties of ... more The aim of this study is to show the possibility to control structural and optical properties of Au nanoparticles (AuNPs) by changing their size and concentration and make comparison between methods of their formation. 1.4 nm thick Au films were formed on borosilicate glass substrates by the vacuum evaporation method. AuNPs were formed on the surface of the substrate by two methods. First is the irradiation by the Nd:YAG laser pulses with intensities from 75 to 180 MW/cm2. Second is thermal annealing, at temperature T=400 °C and the time of curing was varied from 24 to 72 hours. The irradiation of Au film by laser leads to formation of AuNPs. The increase of intensity of laser radiation causes the disappearing of small Au nanoparticles and growing of big nanoparticles from 113-180 nm due to the agglomeration of small particles into big ones and, correspondingly, concentration of particles decreases. In contrast, thermal annealing at T=400 °C from 48 to 72 hours leads to the island f...
Polymers
Biodegradable polymer composites from renewable resources are the next-generation of wood-like ma... more Biodegradable polymer composites from renewable resources are the next-generation of wood-like materials and are crucial for the development of various industries to meet sustainability goals. Functional applications like packaging, medicine, automotive, construction and sustainable housing are just some that would greatly benefit. Some of the existing industries, like wood plastic composites, already encompass given examples but are dominated by fossil-based polymers that are unsustainable. Thus, there is a background to bring a new perspective approach for the combination of microcrystalline cellulose (MCC) and nanofibrillated cellulose (NFC) fillers in bio-based poly (butylene succinate) matrix (PBS). MCC, NFC and MCC/NFC filler total loading at 40 wt % was used to obtain more insights for wood-like composite applications. The ability to tailor the biodegradable characteristics and the mechanical properties of PBS composites is indispensable for extended applications. Five compos...
Key Engineering Materials, 2018
The aim of this study is to show the possibility to control structural and optical properties of ... more The aim of this study is to show the possibility to control structural and optical properties of Au nanoparticles (AuNPs) by changing their size and concentration and make comparison between methods of their formation. 1.4 nm thick Au films were formed on borosilicate glass substrates by the vacuum evaporation method. AuNPs were formed on the surface of the substrate by two methods. First is the irradiation by the Nd:YAG laser pulses with intensities from 75 to 180 MW/cm2. Second is thermal annealing, at temperature T=400 °C and the time of curing was varied from 24 to 72 hours. The irradiation of Au film by laser leads to formation of AuNPs. The increase of intensity of laser radiation causes the disappearing of small Au nanoparticles and growing of big nanoparticles from 113-180 nm due to the agglomeration of small particles into big ones and, correspondingly, concentration of particles decreases. In contrast, thermal annealing at T=400 °C from 48 to 72 hours leads to the island f...
Polymers
Biodegradable polymer composites from renewable resources are the next-generation of wood-like ma... more Biodegradable polymer composites from renewable resources are the next-generation of wood-like materials and are crucial for the development of various industries to meet sustainability goals. Functional applications like packaging, medicine, automotive, construction and sustainable housing are just some that would greatly benefit. Some of the existing industries, like wood plastic composites, already encompass given examples but are dominated by fossil-based polymers that are unsustainable. Thus, there is a background to bring a new perspective approach for the combination of microcrystalline cellulose (MCC) and nanofibrillated cellulose (NFC) fillers in bio-based poly (butylene succinate) matrix (PBS). MCC, NFC and MCC/NFC filler total loading at 40 wt % was used to obtain more insights for wood-like composite applications. The ability to tailor the biodegradable characteristics and the mechanical properties of PBS composites is indispensable for extended applications. Five compos...