Lars Dölken - Academia.edu (original) (raw)
Papers by Lars Dölken
Nature communications, 2015
Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced ho... more Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a mod...
Journal of visualized experiments : JoVE, 2013
The development of whole-transcriptome microarrays and next-generation sequencing has revolutioni... more The development of whole-transcriptome microarrays and next-generation sequencing has revolutionized our understanding of the complexity of cellular gene expression. Along with a better understanding of the involved molecular mechanisms, precise measurements of the underlying kinetics have become increasingly important. Here, these powerful methodologies face major limitations due to intrinsic properties of the template samples they study, i.e. total cellular RNA. In many cases changes in total cellular RNA occur either too slowly or too quickly to represent the underlying molecular events and their kinetics with sufficient resolution. In addition, the contribution of alterations in RNA synthesis, processing, and decay are not readily differentiated. We recently developed high-resolution gene expression profiling to overcome these limitations. Our approach is based on metabolic labeling of newly transcribed RNA with 4-thiouridine (thus also referred to as 4sU-tagging) followed by ri...
Genome biology, 2013
PARma is a complete data analysis software for AGO-PAR-CLIP experiments to identify target sites ... more PARma is a complete data analysis software for AGO-PAR-CLIP experiments to identify target sites of microRNAs as well as the microRNA binding to these sites. It integrates specific characteristics of the experiments into a generative model. The model and a novel pattern discovery tool are iteratively applied to data to estimate seed activity probabilities, cluster confidence scores and to assign the most probable microRNA. Based on differential PAR-CLIP analysis and comparison to RIP-Chip data, we show that PARma is more accurate than existing approaches. PARma is available from http://www.bio.ifi.lmu.de/PARma.
Journal of Virology, 2014
Murine cytomegalovirus (MCMV) rapidly induces activation of nuclear factor κB (NF-κB) upon infect... more Murine cytomegalovirus (MCMV) rapidly induces activation of nuclear factor κB (NF-κB) upon infection of host cells. After a transient phase of activation, the MCMV M45 protein blocks all canonical NF-κB-activating pathways by inducing the degradation of the gamma subunit of the inhibitor of κB kinase complex (IKKγ; commonly referred to as the NF-κB essential modulator [NEMO]). Here we show that the viral M45 protein also mediates rapid NF-κB activation immediately after infection. MCMV mutants lacking M45 or expressing C-terminally truncated M45 proteins induced neither NF-κB activation nor transcription of NF-κB-dependent genes within the first 3 h of infection. Rapid NF-κB activation was absent in MCMV-infected NEMO-deficient fibroblasts, indicating that activation occurs at or upstream of the IKK complex. NF-κB activation was strongly reduced in murine fibroblasts lacking receptor-interacting protein 1 (RIP1), a known M45-interacting protein, but was restored upon complementation with murine RIP1. However, the ability of M45 to interact with RIP1 and NEMO was not sufficient to induce NF-κB activation upon infection. In addition, incorporation of the M45 protein into virions was required. This was dependent on a C-terminal region of M45, which is not required for interaction with RIP1 and NEMO. We propose a model in which M45 delivered by viral particles activates NF-κB, presumably involving an interaction with RIP1 and NEMO. Later in infection, expression of M45 induces the degradation of NEMO and the shutdown of canonical NF-κB activation. Transcription factor NF-κB is an important regulator of innate and adaptive immunity. Its activation can be beneficial or detrimental for viral pathogens. Therefore, many viruses interfere with NF-κB signaling by stimulating or inhibiting the activation of this transcription factor. Cytomegaloviruses, opportunistic pathogens that cause lifelong infections in their hosts, activate NF-κB rapidly and transiently upon infection but block NF-κB signaling soon thereafter. Here we report the surprising finding that the murine cytomegalovirus protein M45, a component of viral particles, plays a dual role in NF-κB signaling. It not only blocks NF-κB signaling later in infection but also triggers the rapid activation of NF-κB immediately following virus entry into host cells. Both activation and inhibition involve M45 interaction with the cellular signaling mediators RIP1 and NEMO. Similar dual functions in NF-κB signaling are likely to be found in other viral proteins.
Molecular systems biology, Jan 8, 2010
Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of mac... more Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of primary macrophages using stable isotope labelling with amino acids in cell culture, phosphopeptide enrichment and high-resolution mass spectrometry. In parallel, nascent RNA was profiled to link transcription factor (TF) phosphorylation to TLR4-induced transcriptional activation. We reproducibly identified 1850 phosphoproteins with 6956 phosphorylation sites, two thirds of which were not reported earlier. LPS caused major dynamic changes in the phosphoproteome (24% up-regulation and 9% down-regulation). Functional bioinformatic analyses confirmed canonical players of the TLR pathway and highlighted other signalling modules (e.g. mTOR, ATM/ATR kinases) and the cytoskeleton as hotspots of LPS-reg...
Roseolovirus, or human herpesvirus 6 (HHV-6), is a ubiquitous human pathogen infecting over 95% o... more Roseolovirus, or human herpesvirus 6 (HHV-6), is a ubiquitous human pathogen infecting over 95% of the population by the age of 2 years. As with other herpesviruses, reactivation of HHV-6 can present with severe complications in immunocompromised individuals. Recent studies have highlighted the importance of herpesvirus-derived microRNAs (miRNAs) in modulating both cellular and viral gene expression. An initial report which computed the likelihood of various viruses to encode miRNAs did not predict HHV-6 miRNAs. To experimentally screen for small HHV-6-encoded RNAs, we conducted large-scale sequencing of Sup-T-1 cells lytically infected with a laboratory strain of HHV-6B. This revealed an abundant, 60-to 65-nucleotide RNA of unknown function derived from the lytic origin of replication (OriLyt) that gave rise to smaller RNA species of 18 or 19 nucleotides. In addition, we identified four pre-miRNAs whose mature forms accumulated in Argonaute 2. In contrast to the case for other betaherpesviruses, HHV-6B miRNAs are expressed from direct repeat regions (DR L and DR R ) located at either side of the genome. All miRNAs are conserved in the closely related HHV-6A variant, and one of them is a seed ortholog of the human miRNA miR-582-5p. Similar to alphaherpesvirus miRNAs, they are expressed in antisense orientation relative to immediateearly open reading frames (ORFs) and thus have the potential to regulate key viral genes.
RNA, 2010
In mammals, microRNAs (miRNAs) can play diverse roles in viral infection through their capacity t... more In mammals, microRNAs (miRNAs) can play diverse roles in viral infection through their capacity to regulate both host and viral genes. Recent reports have demonstrated that specific miRNAs change in expression level upon infection and can impact viral production and infectivity. It is clear that miRNAs are an integral component of viral-host interactions, and it is likely that both host and virus contain mechanisms to regulate miRNA expression and/or activity. To date, little is known about the mechanisms by which miRNAs are regulated in viral infection. Here we report the rapid down-regulation of miR-27a in multiple mouse cell lines as well as primary macrophages upon infection with the murine cytomegalovirus. Down-regulation of miR-27a occurs independently from two other miRNAs, miR-23a and miR-24, located within the same genomic cluster, and analysis of pri-miRNA levels suggest that regulation occurs post-transcriptionally. miR-27b, a close homolog of miR-27a (20/21 nucleotide identity), also decreases upon infection, and we demonstrate that both miR-27a and miR-27b exert an antiviral function upon over-expression. Drug sensitivity experiments suggest that virus entry is not sufficient to induce the down-regulation of miR-27 and that the mechanism requires synthesis of RNA. Altogether, our findings indicate that miR-27a and miR-27b have antiviral activity against MCMV, and that either the virus or the host encodes molecule(s) for regulating miR-27 accumulation, most likely by inducing the rapid decay of the mature species.
PLoS Pathogens, 2014
Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and di... more Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency.
Virus Genes, 2009
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at a post-tr... more MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at a post-transcriptional level in virtually all eukaryotic organisms and some viruses, particularly herpesviruses. miRNAs are non-immunogenic, stealthy tools for viruses to regulate their as well as host gene expression. The human cytomegalovirus (HCMV) is the major cause of morbidity in immunocompromised patients and allogenic bone-marrow or organ-transplant recipients and the leading cause of congenital birth defects. HCMV miRNAs may provide valuable targets for new urgently needed antiviral drugs. This review focuses on recent findings for viral miRNAs expressed by cytomegaloviruses (CMV) including data from human, chimpanzee, and murine CMV. These are discussed in the context of findings for other viruses to highlight potentially conserved roles exerted by viral miRNAs.
RNA Biology, 2011
M icro-RNAs (miRNAs) are small non-coding RNA molecules which provide a subtle layer of regulatio... more M icro-RNAs (miRNAs) are small non-coding RNA molecules which provide a subtle layer of regulation to thousands of cellular genes. The identification of virally encoded miRNAs added another layer of complexity to the dense interaction between viruses and their natural hosts. While it has been shown that viral miRNAs can regulate both cellular and viral gene expression, target identification has been a difficult and cumbersome task. The immunoprecipitation of Argonaute (Ago)-protein containing RNA-induced silencing complexes (RISC) followed by microarray analysis (RIP-Chip) allows the identification of miRNA-targetomes at whole transcriptome level. We applied Ago2-based RIP-Chip to identify cellular transcripts targeted by Kaposi's sarcomaassociated herpesvirus (KSHV, n = 114), Epstein-Barr virus (EBV, n = 44) and cellular miRNAs (n = 2,337) in six latently infected or stably transduced human B-cell lines. While RIP-Chip yields a plethora of high-confidence miRNA targets and provides a quantitative estimate of miRNA function, additional biochemical methods like HITS-CLIP or PAR-CLIP and bioinformatic analysis are required to identify individual miRNA binding sites. Together, these methods will be useful to unravel the network of regulation exerted by both viral and cellular miRNAs, thereby providing the basis for functional studies on miRNAmediated regulation of gene expression in herpesvirus infections.
RNA Biology, 2013
High concentrations (> 100 µM) of ... more High concentrations (> 100 µM) of the ribonucleoside analog 4-thiouridine (4sU) is widely used in methods for RNA analysis like photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) and nascent messenger (m)RNA labeling (4sU-tagging). Here, we show that 4sU-tagging at low concentrations ≤ 10 µM can be used to measure production and processing of ribosomal (r)RNA. However, elevated concentrations of 4sU (> 50 µM), which are usually used for mRNA labeling experiments, inhibit production and processing of 47S rRNA. The inhibition of rRNA synthesis is accompanied by nucleoplasmic translocation of nucleolar nucleophosmin (NPM1), induction of the tumor suppressor p53, and inhibition of proliferation. We conclude that metabolic labeling of RNA by 4sU triggers a nucleolar stress response, which might influence the interpretation of results. Therefore, functional ribosome biogenesis, nucleolar integrity, and cell cycle should be addressed in 4sU labeling experiments.
RNA, 2008
RNA levels in a cell are determined by the relative rates of RNA synthesis and decay. State-of-th... more RNA levels in a cell are determined by the relative rates of RNA synthesis and decay. State-of-the-art transcriptional analyses only employ total cellular RNA. Therefore, changes in RNA levels cannot be attributed to RNA synthesis or decay, and temporal resolution is poor. Recently, it was reported that newly transcribed RNA can be biosynthetically labeled for 1-2 h using thiolated nucleosides, purified from total cellular RNA and subjected to microarray analysis. However, in order to study signaling events at molecular level, analysis of changes occurring within minutes is required. We developed an improved approach to separate total cellular RNA into newly transcribed and preexisting RNA following 10-15 min of metabolic labeling. Employing new computational tools for array normalization and half-life determination we simultaneously study short-term RNA synthesis and decay as well as their impact on cellular transcript levels. As an example we studied the response of fibroblasts to type I and II interferons (IFN). Analysis of RNA transcribed within 15-30 min at different times during the first three hours of interferon-receptor activation resulted in a >10-fold increase in microarray sensitivity and provided a comprehensive profile of the kinetics of IFN-mediated changes in gene expression. We identify a previously undisclosed highly connected network of short-lived transcripts selectively down-regulated by IFNg in between 30 and 60 min after IFN treatment showing strong associations with cell cycle and apoptosis, indicating novel mechanisms by which IFNg affects these pathways. .
Proceedings of the National Academy of Sciences, 2013
This article contains supporting information online at www.pnas.org/lookup/suppl/
PLoS Pathogens, 2012
Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only mo... more Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only modestly alter the cellular miRNA profile. The most prominent alteration upon lytic murine cytomegalovirus (MCMV) infection is the rapid degradation of the cellular miR-27a and miR-27b. Here, we report that this regulation is mediated by the ,1.7 kb spliced and highly abundant MCMV m169 transcript. Specificity to miR-27a/b is mediated by a single, apparently optimized, miRNA binding site located in its 39-UTR. This site is easily and efficiently retargeted to other cellular and viral miRNAs by target site replacement. Expression of the 39-UTR of m169 by an adenoviral vector was sufficient to mediate its function, indicating that no other viral factors are essential in this process. Degradation of miR-27a/b was found to be accompanied by 39-tailing and -trimming. Despite its dramatic effect on miRNA stability, we found this interaction to be mutual, indicating potential regulation of m169 by miR-27a/b. Most interestingly, three mutant viruses no longer able to target miR-27a/b, either due to miRNA target site disruption or target site replacement, showed significant attenuation in multiple organs as early as 4 days post infection, indicating that degradation of miR-27a/b is important for efficient MCMV replication in vivo.
PLoS Pathogens, 2013
Epstein-Barr virus (EBV) causes a persistent infection in human B cells by establishing specific ... more Epstein-Barr virus (EBV) causes a persistent infection in human B cells by establishing specific transcription programs to control B cell activation and differentiation. Transcriptional reprogramming of EBV infected B cells is predominantly driven by the action of EBV nuclear antigens, among them the transcriptional repressor EBNA3A. By comparing gene expression profiles of wt and EBNA3A negative EBV infected B cells, we have previously identified a broad array of cellular genes controlled by EBNA3A. We now find that genes repressed by EBNA3A in these cells are significantly enriched for the repressive histone mark H3K27me3, which is installed by Polycomb group (PcG) proteins. This PcG-controlled subset of genes also carries H3K27me3 marks in a variety of other tissues, suggesting that the commitment to PcG silencing is an intrinsic feature of these gene loci that can be used by EBNA3A. In addition, EBNA3A targets frequently reside in coregulated gene clusters. To study the mechanism of gene repression by EBNA3A and to evaluate the relative contribution of PcG proteins during this process, we have selected the genomic neighbors CXCL10 and CXCL9 as a model for co-repressed and PcG-controlled genes. We show that EBNA3A binds to CBF1 occupied intergenic enhancers located between CXCL10 and CXCL9 and displaces the transactivator EBNA2. This impairs enhancer activity, resulting in a rapid transcriptional shutdown of both genes in a CBF1-dependent manner and initiation of a delayed gain of H3K27me3 marks covering an extended chromatin domain. H3K27me3 marks increase gradually and are maintained by EBNA3A. Our study provides direct evidence that repression by EBNA3A requires CBF1 and that EBNA3A and EBNA2 compete for access to CBF1 at identical genomic sites. Most importantly, our results demonstrate that transcriptional silencing by EBNA3A precedes the appearance of repressive PcG marks and indicate that both events are triggered by loss of enhancer activity.
PLoS Pathogens, 2010
Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger... more Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4 + T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence.
PLoS Pathogens, 2011
Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated ... more Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated with graft failure. By forming the boundary between circulation and organ parenchyma, endothelial cells (EC) are suited for bidirectional virus spread from and to the transplant. We applied Cre/loxP-mediated green-fluorescence-tagging of EC-derived murine CMV (MCMV) to quantify the role of infected EC in transplantation-associated CMV dissemination in the mouse model. Both ECand non-EC-derived virus originating from infected Tie2-cre + heart and kidney transplants were readily transmitted to MCMV-naïve recipients by primary viremia. In contrast, when a Tie2-cre + transplant was infected by primary viremia in an infected recipient, the recombined EC-derived virus poorly spread to recipient tissues. Similarly, in reverse direction, ECderived virus from infected Tie2-cre + recipient tissues poorly spread to the transplant. These data contradict any privileged role of EC in CMV dissemination and challenge an indiscriminate applicability of the primary and secondary viremia concept of virus dissemination.
PLoS Pathogens, 2012
During viral infections cellular gene expression is subject to rapid alterations induced by both ... more During viral infections cellular gene expression is subject to rapid alterations induced by both viral and antiviral mechanisms. In this study, we applied metabolic labeling of newly transcribed RNA with 4-thiouridine (4sU-tagging) to dissect the real-time kinetics of cellular and viral transcriptional activity during lytic murine cytomegalovirus (MCMV) infection. Microarray profiling on newly transcribed RNA obtained at different times during the first six hours of MCMV infection revealed discrete functional clusters of cellular genes regulated with distinct kinetics at surprising temporal resolution. Immediately upon virus entry, a cluster of NF-kB-and interferon-regulated genes was induced. Rapid viral counter-regulation of this coincided with a very transient DNA-damage response, followed by a delayed ER-stress response. Rapid counter-regulation of all three clusters indicated the involvement of novel viral regulators targeting these pathways. In addition, down-regulation of two clusters involved in cell-differentiation (rapid repression) and cell-cycle (delayed repression) was observed. Promoter analysis revealed all five clusters to be associated with distinct transcription factors, of which NF-kB and c-Myc were validated to precisely match the respective transcriptional changes observed in newly transcribed RNA. 4sU-tagging also allowed us to study the real-time kinetics of viral gene expression in the absence of any interfering virion-associated-RNA. Both qRT-PCR and next-generation sequencing demonstrated a sharp peak of viral gene expression during the first two hours of infection including transcription of immediate-early, early and even well characterized late genes. Interestingly, this was subject to rapid gene silencing by 5-6 hours post infection. Despite the rapid increase in viral DNA load during viral DNA replication, transcriptional activity of some viral genes remained remarkably constant until late-stage infection, or was subject to further continuous decline. In summary, this study pioneers real-time transcriptional analysis during a lytic herpesvirus infection and highlights numerous novel regulatory aspects of virus-host-cell interaction.
Nucleic Acids Research, 2009
RNA levels in a cell are regulated by the relative rates of RNA synthesis and decay. We recently ... more RNA levels in a cell are regulated by the relative rates of RNA synthesis and decay. We recently developed a new approach for measuring both RNA synthesis and decay in a single experimental setting by biosynthetic labeling of newly transcribed RNA. Here, we show that this provides measurements of RNA half-lives from microarray data with a so far unreached accuracy. Based on such measurements of RNA half-lives for human B-cells and mouse fibroblasts, we identified conserved regulatory principles for a large number of biological processes. We show that different regulatory patterns between functionally similar proteins are characterized by differences in the half-life of the corresponding transcripts and can be identified by measuring RNA half-life. We identify more than 100 protein families which show such differential regulatory patterns in both species. Additionally, we provide strong evidence that the activity of protein complexes consisting of subunits with overall long transcript half-lives can be regulated by transcriptional regulation of individual key subunits with short-lived transcripts. Based on this observation, we predict more than 100 key regulatory subunits for human complexes of which 28% could be confirmed in mice (P < 10 À9 ). Therefore, this atlas of transcript half-lives provides new fundamental insights into many cellular processes.
Molecular Systems Biology, 2010
Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of mac... more Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of primary macrophages using stable isotope labelling with amino acids in cell culture, phosphopeptide enrichment and high-resolution mass spectrometry. In parallel, nascent RNA was profiled to link transcription factor (TF) phosphorylation to TLR4-induced transcriptional activation. We reproducibly identified 1850 phosphoproteins with 6956 phosphorylation sites, two thirds of which were not reported earlier. LPS caused major dynamic changes in the phosphoproteome (24% up-regulation and 9% down-regulation). Functional bioinformatic analyses confirmed canonical players of the TLR pathway and highlighted other signalling modules (e.g. mTOR, ATM/ATR kinases) and the cytoskeleton as hotspots of LPS-regulated phosphorylation. Finally, weaving together phosphoproteome and nascent transcriptome data by in silico promoter analysis, we implicated several phosphorylated TFs in primary LPS-controlled gene expression.
Nature communications, 2015
Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced ho... more Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a mod...
Journal of visualized experiments : JoVE, 2013
The development of whole-transcriptome microarrays and next-generation sequencing has revolutioni... more The development of whole-transcriptome microarrays and next-generation sequencing has revolutionized our understanding of the complexity of cellular gene expression. Along with a better understanding of the involved molecular mechanisms, precise measurements of the underlying kinetics have become increasingly important. Here, these powerful methodologies face major limitations due to intrinsic properties of the template samples they study, i.e. total cellular RNA. In many cases changes in total cellular RNA occur either too slowly or too quickly to represent the underlying molecular events and their kinetics with sufficient resolution. In addition, the contribution of alterations in RNA synthesis, processing, and decay are not readily differentiated. We recently developed high-resolution gene expression profiling to overcome these limitations. Our approach is based on metabolic labeling of newly transcribed RNA with 4-thiouridine (thus also referred to as 4sU-tagging) followed by ri...
Genome biology, 2013
PARma is a complete data analysis software for AGO-PAR-CLIP experiments to identify target sites ... more PARma is a complete data analysis software for AGO-PAR-CLIP experiments to identify target sites of microRNAs as well as the microRNA binding to these sites. It integrates specific characteristics of the experiments into a generative model. The model and a novel pattern discovery tool are iteratively applied to data to estimate seed activity probabilities, cluster confidence scores and to assign the most probable microRNA. Based on differential PAR-CLIP analysis and comparison to RIP-Chip data, we show that PARma is more accurate than existing approaches. PARma is available from http://www.bio.ifi.lmu.de/PARma.
Journal of Virology, 2014
Murine cytomegalovirus (MCMV) rapidly induces activation of nuclear factor κB (NF-κB) upon infect... more Murine cytomegalovirus (MCMV) rapidly induces activation of nuclear factor κB (NF-κB) upon infection of host cells. After a transient phase of activation, the MCMV M45 protein blocks all canonical NF-κB-activating pathways by inducing the degradation of the gamma subunit of the inhibitor of κB kinase complex (IKKγ; commonly referred to as the NF-κB essential modulator [NEMO]). Here we show that the viral M45 protein also mediates rapid NF-κB activation immediately after infection. MCMV mutants lacking M45 or expressing C-terminally truncated M45 proteins induced neither NF-κB activation nor transcription of NF-κB-dependent genes within the first 3 h of infection. Rapid NF-κB activation was absent in MCMV-infected NEMO-deficient fibroblasts, indicating that activation occurs at or upstream of the IKK complex. NF-κB activation was strongly reduced in murine fibroblasts lacking receptor-interacting protein 1 (RIP1), a known M45-interacting protein, but was restored upon complementation with murine RIP1. However, the ability of M45 to interact with RIP1 and NEMO was not sufficient to induce NF-κB activation upon infection. In addition, incorporation of the M45 protein into virions was required. This was dependent on a C-terminal region of M45, which is not required for interaction with RIP1 and NEMO. We propose a model in which M45 delivered by viral particles activates NF-κB, presumably involving an interaction with RIP1 and NEMO. Later in infection, expression of M45 induces the degradation of NEMO and the shutdown of canonical NF-κB activation. Transcription factor NF-κB is an important regulator of innate and adaptive immunity. Its activation can be beneficial or detrimental for viral pathogens. Therefore, many viruses interfere with NF-κB signaling by stimulating or inhibiting the activation of this transcription factor. Cytomegaloviruses, opportunistic pathogens that cause lifelong infections in their hosts, activate NF-κB rapidly and transiently upon infection but block NF-κB signaling soon thereafter. Here we report the surprising finding that the murine cytomegalovirus protein M45, a component of viral particles, plays a dual role in NF-κB signaling. It not only blocks NF-κB signaling later in infection but also triggers the rapid activation of NF-κB immediately following virus entry into host cells. Both activation and inhibition involve M45 interaction with the cellular signaling mediators RIP1 and NEMO. Similar dual functions in NF-κB signaling are likely to be found in other viral proteins.
Molecular systems biology, Jan 8, 2010
Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of mac... more Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of primary macrophages using stable isotope labelling with amino acids in cell culture, phosphopeptide enrichment and high-resolution mass spectrometry. In parallel, nascent RNA was profiled to link transcription factor (TF) phosphorylation to TLR4-induced transcriptional activation. We reproducibly identified 1850 phosphoproteins with 6956 phosphorylation sites, two thirds of which were not reported earlier. LPS caused major dynamic changes in the phosphoproteome (24% up-regulation and 9% down-regulation). Functional bioinformatic analyses confirmed canonical players of the TLR pathway and highlighted other signalling modules (e.g. mTOR, ATM/ATR kinases) and the cytoskeleton as hotspots of LPS-reg...
Roseolovirus, or human herpesvirus 6 (HHV-6), is a ubiquitous human pathogen infecting over 95% o... more Roseolovirus, or human herpesvirus 6 (HHV-6), is a ubiquitous human pathogen infecting over 95% of the population by the age of 2 years. As with other herpesviruses, reactivation of HHV-6 can present with severe complications in immunocompromised individuals. Recent studies have highlighted the importance of herpesvirus-derived microRNAs (miRNAs) in modulating both cellular and viral gene expression. An initial report which computed the likelihood of various viruses to encode miRNAs did not predict HHV-6 miRNAs. To experimentally screen for small HHV-6-encoded RNAs, we conducted large-scale sequencing of Sup-T-1 cells lytically infected with a laboratory strain of HHV-6B. This revealed an abundant, 60-to 65-nucleotide RNA of unknown function derived from the lytic origin of replication (OriLyt) that gave rise to smaller RNA species of 18 or 19 nucleotides. In addition, we identified four pre-miRNAs whose mature forms accumulated in Argonaute 2. In contrast to the case for other betaherpesviruses, HHV-6B miRNAs are expressed from direct repeat regions (DR L and DR R ) located at either side of the genome. All miRNAs are conserved in the closely related HHV-6A variant, and one of them is a seed ortholog of the human miRNA miR-582-5p. Similar to alphaherpesvirus miRNAs, they are expressed in antisense orientation relative to immediateearly open reading frames (ORFs) and thus have the potential to regulate key viral genes.
RNA, 2010
In mammals, microRNAs (miRNAs) can play diverse roles in viral infection through their capacity t... more In mammals, microRNAs (miRNAs) can play diverse roles in viral infection through their capacity to regulate both host and viral genes. Recent reports have demonstrated that specific miRNAs change in expression level upon infection and can impact viral production and infectivity. It is clear that miRNAs are an integral component of viral-host interactions, and it is likely that both host and virus contain mechanisms to regulate miRNA expression and/or activity. To date, little is known about the mechanisms by which miRNAs are regulated in viral infection. Here we report the rapid down-regulation of miR-27a in multiple mouse cell lines as well as primary macrophages upon infection with the murine cytomegalovirus. Down-regulation of miR-27a occurs independently from two other miRNAs, miR-23a and miR-24, located within the same genomic cluster, and analysis of pri-miRNA levels suggest that regulation occurs post-transcriptionally. miR-27b, a close homolog of miR-27a (20/21 nucleotide identity), also decreases upon infection, and we demonstrate that both miR-27a and miR-27b exert an antiviral function upon over-expression. Drug sensitivity experiments suggest that virus entry is not sufficient to induce the down-regulation of miR-27 and that the mechanism requires synthesis of RNA. Altogether, our findings indicate that miR-27a and miR-27b have antiviral activity against MCMV, and that either the virus or the host encodes molecule(s) for regulating miR-27 accumulation, most likely by inducing the rapid decay of the mature species.
PLoS Pathogens, 2014
Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and di... more Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency.
Virus Genes, 2009
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at a post-tr... more MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at a post-transcriptional level in virtually all eukaryotic organisms and some viruses, particularly herpesviruses. miRNAs are non-immunogenic, stealthy tools for viruses to regulate their as well as host gene expression. The human cytomegalovirus (HCMV) is the major cause of morbidity in immunocompromised patients and allogenic bone-marrow or organ-transplant recipients and the leading cause of congenital birth defects. HCMV miRNAs may provide valuable targets for new urgently needed antiviral drugs. This review focuses on recent findings for viral miRNAs expressed by cytomegaloviruses (CMV) including data from human, chimpanzee, and murine CMV. These are discussed in the context of findings for other viruses to highlight potentially conserved roles exerted by viral miRNAs.
RNA Biology, 2011
M icro-RNAs (miRNAs) are small non-coding RNA molecules which provide a subtle layer of regulatio... more M icro-RNAs (miRNAs) are small non-coding RNA molecules which provide a subtle layer of regulation to thousands of cellular genes. The identification of virally encoded miRNAs added another layer of complexity to the dense interaction between viruses and their natural hosts. While it has been shown that viral miRNAs can regulate both cellular and viral gene expression, target identification has been a difficult and cumbersome task. The immunoprecipitation of Argonaute (Ago)-protein containing RNA-induced silencing complexes (RISC) followed by microarray analysis (RIP-Chip) allows the identification of miRNA-targetomes at whole transcriptome level. We applied Ago2-based RIP-Chip to identify cellular transcripts targeted by Kaposi's sarcomaassociated herpesvirus (KSHV, n = 114), Epstein-Barr virus (EBV, n = 44) and cellular miRNAs (n = 2,337) in six latently infected or stably transduced human B-cell lines. While RIP-Chip yields a plethora of high-confidence miRNA targets and provides a quantitative estimate of miRNA function, additional biochemical methods like HITS-CLIP or PAR-CLIP and bioinformatic analysis are required to identify individual miRNA binding sites. Together, these methods will be useful to unravel the network of regulation exerted by both viral and cellular miRNAs, thereby providing the basis for functional studies on miRNAmediated regulation of gene expression in herpesvirus infections.
RNA Biology, 2013
High concentrations (&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; 100 µM) of ... more High concentrations (&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; 100 µM) of the ribonucleoside analog 4-thiouridine (4sU) is widely used in methods for RNA analysis like photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) and nascent messenger (m)RNA labeling (4sU-tagging). Here, we show that 4sU-tagging at low concentrations ≤ 10 µM can be used to measure production and processing of ribosomal (r)RNA. However, elevated concentrations of 4sU (&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; 50 µM), which are usually used for mRNA labeling experiments, inhibit production and processing of 47S rRNA. The inhibition of rRNA synthesis is accompanied by nucleoplasmic translocation of nucleolar nucleophosmin (NPM1), induction of the tumor suppressor p53, and inhibition of proliferation. We conclude that metabolic labeling of RNA by 4sU triggers a nucleolar stress response, which might influence the interpretation of results. Therefore, functional ribosome biogenesis, nucleolar integrity, and cell cycle should be addressed in 4sU labeling experiments.
RNA, 2008
RNA levels in a cell are determined by the relative rates of RNA synthesis and decay. State-of-th... more RNA levels in a cell are determined by the relative rates of RNA synthesis and decay. State-of-the-art transcriptional analyses only employ total cellular RNA. Therefore, changes in RNA levels cannot be attributed to RNA synthesis or decay, and temporal resolution is poor. Recently, it was reported that newly transcribed RNA can be biosynthetically labeled for 1-2 h using thiolated nucleosides, purified from total cellular RNA and subjected to microarray analysis. However, in order to study signaling events at molecular level, analysis of changes occurring within minutes is required. We developed an improved approach to separate total cellular RNA into newly transcribed and preexisting RNA following 10-15 min of metabolic labeling. Employing new computational tools for array normalization and half-life determination we simultaneously study short-term RNA synthesis and decay as well as their impact on cellular transcript levels. As an example we studied the response of fibroblasts to type I and II interferons (IFN). Analysis of RNA transcribed within 15-30 min at different times during the first three hours of interferon-receptor activation resulted in a >10-fold increase in microarray sensitivity and provided a comprehensive profile of the kinetics of IFN-mediated changes in gene expression. We identify a previously undisclosed highly connected network of short-lived transcripts selectively down-regulated by IFNg in between 30 and 60 min after IFN treatment showing strong associations with cell cycle and apoptosis, indicating novel mechanisms by which IFNg affects these pathways. .
Proceedings of the National Academy of Sciences, 2013
This article contains supporting information online at www.pnas.org/lookup/suppl/
PLoS Pathogens, 2012
Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only mo... more Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only modestly alter the cellular miRNA profile. The most prominent alteration upon lytic murine cytomegalovirus (MCMV) infection is the rapid degradation of the cellular miR-27a and miR-27b. Here, we report that this regulation is mediated by the ,1.7 kb spliced and highly abundant MCMV m169 transcript. Specificity to miR-27a/b is mediated by a single, apparently optimized, miRNA binding site located in its 39-UTR. This site is easily and efficiently retargeted to other cellular and viral miRNAs by target site replacement. Expression of the 39-UTR of m169 by an adenoviral vector was sufficient to mediate its function, indicating that no other viral factors are essential in this process. Degradation of miR-27a/b was found to be accompanied by 39-tailing and -trimming. Despite its dramatic effect on miRNA stability, we found this interaction to be mutual, indicating potential regulation of m169 by miR-27a/b. Most interestingly, three mutant viruses no longer able to target miR-27a/b, either due to miRNA target site disruption or target site replacement, showed significant attenuation in multiple organs as early as 4 days post infection, indicating that degradation of miR-27a/b is important for efficient MCMV replication in vivo.
PLoS Pathogens, 2013
Epstein-Barr virus (EBV) causes a persistent infection in human B cells by establishing specific ... more Epstein-Barr virus (EBV) causes a persistent infection in human B cells by establishing specific transcription programs to control B cell activation and differentiation. Transcriptional reprogramming of EBV infected B cells is predominantly driven by the action of EBV nuclear antigens, among them the transcriptional repressor EBNA3A. By comparing gene expression profiles of wt and EBNA3A negative EBV infected B cells, we have previously identified a broad array of cellular genes controlled by EBNA3A. We now find that genes repressed by EBNA3A in these cells are significantly enriched for the repressive histone mark H3K27me3, which is installed by Polycomb group (PcG) proteins. This PcG-controlled subset of genes also carries H3K27me3 marks in a variety of other tissues, suggesting that the commitment to PcG silencing is an intrinsic feature of these gene loci that can be used by EBNA3A. In addition, EBNA3A targets frequently reside in coregulated gene clusters. To study the mechanism of gene repression by EBNA3A and to evaluate the relative contribution of PcG proteins during this process, we have selected the genomic neighbors CXCL10 and CXCL9 as a model for co-repressed and PcG-controlled genes. We show that EBNA3A binds to CBF1 occupied intergenic enhancers located between CXCL10 and CXCL9 and displaces the transactivator EBNA2. This impairs enhancer activity, resulting in a rapid transcriptional shutdown of both genes in a CBF1-dependent manner and initiation of a delayed gain of H3K27me3 marks covering an extended chromatin domain. H3K27me3 marks increase gradually and are maintained by EBNA3A. Our study provides direct evidence that repression by EBNA3A requires CBF1 and that EBNA3A and EBNA2 compete for access to CBF1 at identical genomic sites. Most importantly, our results demonstrate that transcriptional silencing by EBNA3A precedes the appearance of repressive PcG marks and indicate that both events are triggered by loss of enhancer activity.
PLoS Pathogens, 2010
Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger... more Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4 + T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence.
PLoS Pathogens, 2011
Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated ... more Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated with graft failure. By forming the boundary between circulation and organ parenchyma, endothelial cells (EC) are suited for bidirectional virus spread from and to the transplant. We applied Cre/loxP-mediated green-fluorescence-tagging of EC-derived murine CMV (MCMV) to quantify the role of infected EC in transplantation-associated CMV dissemination in the mouse model. Both ECand non-EC-derived virus originating from infected Tie2-cre + heart and kidney transplants were readily transmitted to MCMV-naïve recipients by primary viremia. In contrast, when a Tie2-cre + transplant was infected by primary viremia in an infected recipient, the recombined EC-derived virus poorly spread to recipient tissues. Similarly, in reverse direction, ECderived virus from infected Tie2-cre + recipient tissues poorly spread to the transplant. These data contradict any privileged role of EC in CMV dissemination and challenge an indiscriminate applicability of the primary and secondary viremia concept of virus dissemination.
PLoS Pathogens, 2012
During viral infections cellular gene expression is subject to rapid alterations induced by both ... more During viral infections cellular gene expression is subject to rapid alterations induced by both viral and antiviral mechanisms. In this study, we applied metabolic labeling of newly transcribed RNA with 4-thiouridine (4sU-tagging) to dissect the real-time kinetics of cellular and viral transcriptional activity during lytic murine cytomegalovirus (MCMV) infection. Microarray profiling on newly transcribed RNA obtained at different times during the first six hours of MCMV infection revealed discrete functional clusters of cellular genes regulated with distinct kinetics at surprising temporal resolution. Immediately upon virus entry, a cluster of NF-kB-and interferon-regulated genes was induced. Rapid viral counter-regulation of this coincided with a very transient DNA-damage response, followed by a delayed ER-stress response. Rapid counter-regulation of all three clusters indicated the involvement of novel viral regulators targeting these pathways. In addition, down-regulation of two clusters involved in cell-differentiation (rapid repression) and cell-cycle (delayed repression) was observed. Promoter analysis revealed all five clusters to be associated with distinct transcription factors, of which NF-kB and c-Myc were validated to precisely match the respective transcriptional changes observed in newly transcribed RNA. 4sU-tagging also allowed us to study the real-time kinetics of viral gene expression in the absence of any interfering virion-associated-RNA. Both qRT-PCR and next-generation sequencing demonstrated a sharp peak of viral gene expression during the first two hours of infection including transcription of immediate-early, early and even well characterized late genes. Interestingly, this was subject to rapid gene silencing by 5-6 hours post infection. Despite the rapid increase in viral DNA load during viral DNA replication, transcriptional activity of some viral genes remained remarkably constant until late-stage infection, or was subject to further continuous decline. In summary, this study pioneers real-time transcriptional analysis during a lytic herpesvirus infection and highlights numerous novel regulatory aspects of virus-host-cell interaction.
Nucleic Acids Research, 2009
RNA levels in a cell are regulated by the relative rates of RNA synthesis and decay. We recently ... more RNA levels in a cell are regulated by the relative rates of RNA synthesis and decay. We recently developed a new approach for measuring both RNA synthesis and decay in a single experimental setting by biosynthetic labeling of newly transcribed RNA. Here, we show that this provides measurements of RNA half-lives from microarray data with a so far unreached accuracy. Based on such measurements of RNA half-lives for human B-cells and mouse fibroblasts, we identified conserved regulatory principles for a large number of biological processes. We show that different regulatory patterns between functionally similar proteins are characterized by differences in the half-life of the corresponding transcripts and can be identified by measuring RNA half-life. We identify more than 100 protein families which show such differential regulatory patterns in both species. Additionally, we provide strong evidence that the activity of protein complexes consisting of subunits with overall long transcript half-lives can be regulated by transcriptional regulation of individual key subunits with short-lived transcripts. Based on this observation, we predict more than 100 key regulatory subunits for human complexes of which 28% could be confirmed in mice (P < 10 À9 ). Therefore, this atlas of transcript half-lives provides new fundamental insights into many cellular processes.
Molecular Systems Biology, 2010
Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of mac... more Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of primary macrophages using stable isotope labelling with amino acids in cell culture, phosphopeptide enrichment and high-resolution mass spectrometry. In parallel, nascent RNA was profiled to link transcription factor (TF) phosphorylation to TLR4-induced transcriptional activation. We reproducibly identified 1850 phosphoproteins with 6956 phosphorylation sites, two thirds of which were not reported earlier. LPS caused major dynamic changes in the phosphoproteome (24% up-regulation and 9% down-regulation). Functional bioinformatic analyses confirmed canonical players of the TLR pathway and highlighted other signalling modules (e.g. mTOR, ATM/ATR kinases) and the cytoskeleton as hotspots of LPS-regulated phosphorylation. Finally, weaving together phosphoproteome and nascent transcriptome data by in silico promoter analysis, we implicated several phosphorylated TFs in primary LPS-controlled gene expression.