Libera Berghella - Academia.edu (original) (raw)
Uploads
Papers by Libera Berghella
In mammalian embryogenesis differential gene expression gradually builds the identity and complex... more In mammalian embryogenesis differential gene expression gradually builds the identity and complexity of each tissue and organ system. We systematically quantified mouse polyA-RNA from embryo day E10.5 to birth, sampling 17 whole tissues, enhanced with single-cell measurements for the developing limb. The resulting developmental transcriptome is globally structured by dynamic cytodifferentiation, body-axis and cell-proliferation gene sets, characterized by their promoters’ transcription factor (TF) motif codes. We decomposed the tissue-level transcriptome using scRNA-seq and found that neurogenesis and haematopoiesis dominate at both the gene and cellular levels, jointly accounting for 1/3 of differential gene expression and over 40% of identified cell types. Integrating promoter sequence motifs with companion ENCODE epigenomic profiles identified a promoter de-repression mechanism unique to neuronal expression clusters and attributable to known and novel repressors. Focusing on the ...
Stem Cells International, 2016
International journal of cell biology, 2012
Cytochrome c is a key molecule in mitochondria-mediated apoptosis. It also plays a pivotal role i... more Cytochrome c is a key molecule in mitochondria-mediated apoptosis. It also plays a pivotal role in cell respiration. The switch between these two functions occurs at the moment of its release from mitochondria. This process is therefore extremely relevant for the fate of the cell. Since cytochrome c mediates respiration, we studied the changes in respiratory chain activity during the early stages of apoptosis in order to contribute to unravel the mechanisms of cytochrome c release. We found that, during staurosporine (STS)- induced apoptosis in PC12 cells, respiration is affected before the release of cytochrome c, as shown by a decrease in the endogenous uncoupled respiration and an uncoupling event, both occurring independently of cytochrome c release. The decline in the uncoupled respiration occurs also upon Bcl-2 overexpression (which inhibits cytochrome c release), while the uncoupling event is inhibited by Bcl-2. We also observed that the first stage of nuclear condensation du...
Skeletal Muscle, 2015
The Y-box protein MSY3/Csda represses myogenin transcription in skeletal muscle by binding a high... more The Y-box protein MSY3/Csda represses myogenin transcription in skeletal muscle by binding a highly conserved cis-acting DNA element located just upstream of the myogenin minimal promoter (myogHCE). It is not known how this MSY3 activity is controlled in skeletal muscle. In this study, we provide multiple lines of evidence showing that the post-translational phosphorylation of MSY3 by Akt kinase modulates the MSY3 repression of myogenin. Skeletal muscle and myogenic C2C12 cells were used to study the effects of MSY3 phosphorylation in vivo and in vitro on its sub-cellular localization and activity, by blocking the IGF1/PI3K/Akt pathway, by Akt depletion and over-expression, and by mutating potential MSY3 phosphorylation sites. We observed that, as skeletal muscle progressed from perinatal to postnatal and adult developmental stages, MSY3 protein became gradually dephosphorylated and accumulated in the nucleus. This correlated well with the reduction of phosphorylated active Akt. In C2C12 myogenic cells, blocking the IGF1/PI3K/Akt pathway using LY294002 inhibitor reduced MSY3 phosphorylation levels resulting in its accumulation in the nuclei. Knocking down Akt expression increased the amount of dephosphorylated MSY3 and reduced myogenin expression and muscle differentiation. MSY3 phosphorylation by Akt in vitro impaired its binding at the MyogHCE element, while blocking Akt increased MSY3 binding activity. While Akt over-expression rescued myogenin expression in MSY3 overexpressing myogenic cells, ablation of the Akt substrate, (Ser126 located in the MSY3 cold shock domain) promoted MSY3 accumulation in the nucleus and abolished this rescue. Furthermore, forced expression of Akt in adult skeletal muscle induced MSY3 phosphorylation and myogenin derepression. These results support the hypothesis that MSY3 phosphorylation by Akt interferes with MSY3 repression of myogenin circuit activity during muscle development. This study highlights a previously undescribed Akt-mediated signaling pathway involved in the repression of myogenin expression in myogenic cells and in mature muscle. Given the significance of myogenin regulation in adult muscle, the Akt/MSY3/myogenin regulatory circuit is a potential therapeutic target to counteract muscle degenerative disease.
The International journal of developmental biology, 2000
In amniotes, myogenic commitment appears to be dependent upon signaling from neural tube and dors... more In amniotes, myogenic commitment appears to be dependent upon signaling from neural tube and dorsal ectoderm, that can be replaced by members of the Wnt family and by Sonic hedgehog. Once committed, myoblasts undergo different fates, in that they can differentiate immediately to form the myotome, or later to give rise to primary and secondary muscle fibers. With fiber maturation, satellite cells are first detected; these cells contribute to fiber growth and regeneration during post-natal life. We will describe recent data, mainly from our laboratory, that suggest a different origin for some of the cells that are incorporated into the muscle fibers during late development. We propose the possibility that these myogenic cells are derived from the vasculature, are multi-potent and become committed to myogenesis by local signaling, when ingressing a differentiating muscle tissue. The implications for fetal and perinatal development of the whole mesoderm will also be discussed.
Journal of Cachexia, Sarcopenia and Muscle, 2011
Journal of Cachexia, Sarcopenia and Muscle, 2013
Skeletal muscle regeneration is the process that ensures tissue repair after damage by injury or ... more Skeletal muscle regeneration is the process that ensures tissue repair after damage by injury or in degenerative diseases such as muscular dystrophy. Satellite cells, the adult skeletal muscle progenitor cells, are commonly considered to be the main cell type involved in skeletal muscle regeneration. Their mechanism of action in this process is extensively characterized. However, evidence accumulated in the last decade suggests that other cell types may participate in skeletal muscle regeneration. Although their actual contribution to muscle formation and regeneration is still not clear; if properly manipulated, these cells may become new suitable and powerful sources for cell therapy of skeletal muscle degenerative diseases. Mesoangioblasts, vessel associated stem/progenitor cells with high proliferative, migratory and myogenic potential, are very good candidates for clinical applications and are already in clinical experimentation. In addition, pluripotent stem cells are very promising sources for regeneration of most tissues, including skeletal muscle. Conditions such as muscle cachexia or aging that severely alter homeostasis may be counteracted by transplantation of donor and/or recruitment and activation of resident muscle stem/progenitor cells. Advantages and limitations of different cell therapy approaches will be discussed.
The Journal of Cell Biology, 1999
Science Translational Medicine, 2011
In contrast to conventional gene therapy vectors, human artificial chromosomes (HACs) are episoma... more In contrast to conventional gene therapy vectors, human artificial chromosomes (HACs) are episomal vectors that can carry large regions of the genome containing regulatory elements. So far, HACs have not been used as vectors in gene therapy for treating genetic disorders. Here, we report the amelioration of the dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD) using a combination of HAC-mediated gene replacement and transplantation with blood vessel-associated stem cells (mesoangioblasts). We first genetically corrected mesoangioblasts from dystrophic mdx mice with a HAC vector containing the entire (2.4 Mb) human dystrophin genetic locus. Genetically corrected mesoangioblasts engrafted robustly and gave rise to many dystrophin-positive muscle fibers and muscle satellite cells in dystrophic mice, leading to morphological and functional amelioration of the phenotype that lasted for up to 8 months after transplantation. Thus, HAC-mediated gene transfer shows efficacy in a preclinical model of DMD and offers potential for future clinical translation.
Proceedings of the National Academy of Sciences, 1997
Proceedings of the National Academy of Sciences, 1998
Human Gene Therapy, 1999
Myogenic cells have a limited life span in culture, which prevents expansion at clinically releva... more Myogenic cells have a limited life span in culture, which prevents expansion at clinically relevant levels, and seriously limits any potential use in cell replacement or ex vivo gene therapy. We developed a strategy for reversibly immortalizing human primary myogenic cells, based on retrovirus-mediated integration of a wild-type SV40 large-T antigen (Tag), excisable by means of the Cre-Lox recombination system. Myogenic cells were transduced with a vector (LTTN-LoxP) expressing the SV40 Tag under the control of an LTR modified by the insertion of a LoxP site in the U3 region. Clonal isolates of Tag-positive cells showed modified growth characteristics and a significantly extended life span, while maintaining a full myogenic potential. Transient expression of Cre recombinase, delivered by transfection or adenoviral vector transduction, allowed excision of the entire provirus with up to >90% efficiency. Cultures of Cre-treated (Tag-) or untreated (Tag+) myogenic cells were genetically labeled with a lacZ retroviral vector, and injected into the regenerating muscle of SCID/bg immunodeficient mice. Tag- cells underwent terminal differentiation in vivo, giving rise to clusters of beta-Gal+ hybrid fibers with an efficiency comparable to that of control untransduced cells. Tag+ cells could not be detected after injection. Neither Tag+ nor Tag- cells formed tumor in this xenotransplantation model. Reversible immortalization by Tag therefore allows the expansion of primary myogenic cells in culture without compromising their ability to differentiate in vivo, and could represent a safe method by which to increase the availability of these cells for clinical application.
Genes & Development, 2008
Cellular and Molecular Life Sciences, 2008
In mammalian embryogenesis differential gene expression gradually builds the identity and complex... more In mammalian embryogenesis differential gene expression gradually builds the identity and complexity of each tissue and organ system. We systematically quantified mouse polyA-RNA from embryo day E10.5 to birth, sampling 17 whole tissues, enhanced with single-cell measurements for the developing limb. The resulting developmental transcriptome is globally structured by dynamic cytodifferentiation, body-axis and cell-proliferation gene sets, characterized by their promoters’ transcription factor (TF) motif codes. We decomposed the tissue-level transcriptome using scRNA-seq and found that neurogenesis and haematopoiesis dominate at both the gene and cellular levels, jointly accounting for 1/3 of differential gene expression and over 40% of identified cell types. Integrating promoter sequence motifs with companion ENCODE epigenomic profiles identified a promoter de-repression mechanism unique to neuronal expression clusters and attributable to known and novel repressors. Focusing on the ...
Stem Cells International, 2016
International journal of cell biology, 2012
Cytochrome c is a key molecule in mitochondria-mediated apoptosis. It also plays a pivotal role i... more Cytochrome c is a key molecule in mitochondria-mediated apoptosis. It also plays a pivotal role in cell respiration. The switch between these two functions occurs at the moment of its release from mitochondria. This process is therefore extremely relevant for the fate of the cell. Since cytochrome c mediates respiration, we studied the changes in respiratory chain activity during the early stages of apoptosis in order to contribute to unravel the mechanisms of cytochrome c release. We found that, during staurosporine (STS)- induced apoptosis in PC12 cells, respiration is affected before the release of cytochrome c, as shown by a decrease in the endogenous uncoupled respiration and an uncoupling event, both occurring independently of cytochrome c release. The decline in the uncoupled respiration occurs also upon Bcl-2 overexpression (which inhibits cytochrome c release), while the uncoupling event is inhibited by Bcl-2. We also observed that the first stage of nuclear condensation du...
Skeletal Muscle, 2015
The Y-box protein MSY3/Csda represses myogenin transcription in skeletal muscle by binding a high... more The Y-box protein MSY3/Csda represses myogenin transcription in skeletal muscle by binding a highly conserved cis-acting DNA element located just upstream of the myogenin minimal promoter (myogHCE). It is not known how this MSY3 activity is controlled in skeletal muscle. In this study, we provide multiple lines of evidence showing that the post-translational phosphorylation of MSY3 by Akt kinase modulates the MSY3 repression of myogenin. Skeletal muscle and myogenic C2C12 cells were used to study the effects of MSY3 phosphorylation in vivo and in vitro on its sub-cellular localization and activity, by blocking the IGF1/PI3K/Akt pathway, by Akt depletion and over-expression, and by mutating potential MSY3 phosphorylation sites. We observed that, as skeletal muscle progressed from perinatal to postnatal and adult developmental stages, MSY3 protein became gradually dephosphorylated and accumulated in the nucleus. This correlated well with the reduction of phosphorylated active Akt. In C2C12 myogenic cells, blocking the IGF1/PI3K/Akt pathway using LY294002 inhibitor reduced MSY3 phosphorylation levels resulting in its accumulation in the nuclei. Knocking down Akt expression increased the amount of dephosphorylated MSY3 and reduced myogenin expression and muscle differentiation. MSY3 phosphorylation by Akt in vitro impaired its binding at the MyogHCE element, while blocking Akt increased MSY3 binding activity. While Akt over-expression rescued myogenin expression in MSY3 overexpressing myogenic cells, ablation of the Akt substrate, (Ser126 located in the MSY3 cold shock domain) promoted MSY3 accumulation in the nucleus and abolished this rescue. Furthermore, forced expression of Akt in adult skeletal muscle induced MSY3 phosphorylation and myogenin derepression. These results support the hypothesis that MSY3 phosphorylation by Akt interferes with MSY3 repression of myogenin circuit activity during muscle development. This study highlights a previously undescribed Akt-mediated signaling pathway involved in the repression of myogenin expression in myogenic cells and in mature muscle. Given the significance of myogenin regulation in adult muscle, the Akt/MSY3/myogenin regulatory circuit is a potential therapeutic target to counteract muscle degenerative disease.
The International journal of developmental biology, 2000
In amniotes, myogenic commitment appears to be dependent upon signaling from neural tube and dors... more In amniotes, myogenic commitment appears to be dependent upon signaling from neural tube and dorsal ectoderm, that can be replaced by members of the Wnt family and by Sonic hedgehog. Once committed, myoblasts undergo different fates, in that they can differentiate immediately to form the myotome, or later to give rise to primary and secondary muscle fibers. With fiber maturation, satellite cells are first detected; these cells contribute to fiber growth and regeneration during post-natal life. We will describe recent data, mainly from our laboratory, that suggest a different origin for some of the cells that are incorporated into the muscle fibers during late development. We propose the possibility that these myogenic cells are derived from the vasculature, are multi-potent and become committed to myogenesis by local signaling, when ingressing a differentiating muscle tissue. The implications for fetal and perinatal development of the whole mesoderm will also be discussed.
Journal of Cachexia, Sarcopenia and Muscle, 2011
Journal of Cachexia, Sarcopenia and Muscle, 2013
Skeletal muscle regeneration is the process that ensures tissue repair after damage by injury or ... more Skeletal muscle regeneration is the process that ensures tissue repair after damage by injury or in degenerative diseases such as muscular dystrophy. Satellite cells, the adult skeletal muscle progenitor cells, are commonly considered to be the main cell type involved in skeletal muscle regeneration. Their mechanism of action in this process is extensively characterized. However, evidence accumulated in the last decade suggests that other cell types may participate in skeletal muscle regeneration. Although their actual contribution to muscle formation and regeneration is still not clear; if properly manipulated, these cells may become new suitable and powerful sources for cell therapy of skeletal muscle degenerative diseases. Mesoangioblasts, vessel associated stem/progenitor cells with high proliferative, migratory and myogenic potential, are very good candidates for clinical applications and are already in clinical experimentation. In addition, pluripotent stem cells are very promising sources for regeneration of most tissues, including skeletal muscle. Conditions such as muscle cachexia or aging that severely alter homeostasis may be counteracted by transplantation of donor and/or recruitment and activation of resident muscle stem/progenitor cells. Advantages and limitations of different cell therapy approaches will be discussed.
The Journal of Cell Biology, 1999
Science Translational Medicine, 2011
In contrast to conventional gene therapy vectors, human artificial chromosomes (HACs) are episoma... more In contrast to conventional gene therapy vectors, human artificial chromosomes (HACs) are episomal vectors that can carry large regions of the genome containing regulatory elements. So far, HACs have not been used as vectors in gene therapy for treating genetic disorders. Here, we report the amelioration of the dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD) using a combination of HAC-mediated gene replacement and transplantation with blood vessel-associated stem cells (mesoangioblasts). We first genetically corrected mesoangioblasts from dystrophic mdx mice with a HAC vector containing the entire (2.4 Mb) human dystrophin genetic locus. Genetically corrected mesoangioblasts engrafted robustly and gave rise to many dystrophin-positive muscle fibers and muscle satellite cells in dystrophic mice, leading to morphological and functional amelioration of the phenotype that lasted for up to 8 months after transplantation. Thus, HAC-mediated gene transfer shows efficacy in a preclinical model of DMD and offers potential for future clinical translation.
Proceedings of the National Academy of Sciences, 1997
Proceedings of the National Academy of Sciences, 1998
Human Gene Therapy, 1999
Myogenic cells have a limited life span in culture, which prevents expansion at clinically releva... more Myogenic cells have a limited life span in culture, which prevents expansion at clinically relevant levels, and seriously limits any potential use in cell replacement or ex vivo gene therapy. We developed a strategy for reversibly immortalizing human primary myogenic cells, based on retrovirus-mediated integration of a wild-type SV40 large-T antigen (Tag), excisable by means of the Cre-Lox recombination system. Myogenic cells were transduced with a vector (LTTN-LoxP) expressing the SV40 Tag under the control of an LTR modified by the insertion of a LoxP site in the U3 region. Clonal isolates of Tag-positive cells showed modified growth characteristics and a significantly extended life span, while maintaining a full myogenic potential. Transient expression of Cre recombinase, delivered by transfection or adenoviral vector transduction, allowed excision of the entire provirus with up to >90% efficiency. Cultures of Cre-treated (Tag-) or untreated (Tag+) myogenic cells were genetically labeled with a lacZ retroviral vector, and injected into the regenerating muscle of SCID/bg immunodeficient mice. Tag- cells underwent terminal differentiation in vivo, giving rise to clusters of beta-Gal+ hybrid fibers with an efficiency comparable to that of control untransduced cells. Tag+ cells could not be detected after injection. Neither Tag+ nor Tag- cells formed tumor in this xenotransplantation model. Reversible immortalization by Tag therefore allows the expansion of primary myogenic cells in culture without compromising their ability to differentiate in vivo, and could represent a safe method by which to increase the availability of these cells for clinical application.
Genes & Development, 2008
Cellular and Molecular Life Sciences, 2008