Luciana M Geraldo Vieira - Academia.edu (original) (raw)
Uploads
Papers by Luciana M Geraldo Vieira
Catalysts, 2021
Copper and its oxides are the main catalyst materials able to promote the formation of hydrocarbo... more Copper and its oxides are the main catalyst materials able to promote the formation of hydrocarbons from the electrocatalytic CO2 conversion. Herein, we describe a novel preparation method for carbon-doped copper oxide catalysts based on an oxidative thermal treatment of copper-containing deep eutectic solvents (DES). XRD and EDX analysis of the samples show that thermal treatment at 500 °C in air for a prolonged time (60 min) provides exclusively carbon-doped copper(II) oxide catalysts, whereas shorter calcination time leads to a mixture of less oxidized forms of copper (Cu2O and Cu0), CuO, and a higher carbon content from the DES. Chronoamperometry of the electrode containing the prepared materials in 0.5 M KHCO3 electrolyte show the reduction of CuO to less oxidized copper species. The materials prepared by the use of different DES, copper precursors and calcination times were used as electrocatalysts for the electrochemical CO2 reduction. Chemical analysis of the products reveal...
Catalysts, 2021
Copper and its oxides are the main catalyst materials able to promote the formation of hydrocarbo... more Copper and its oxides are the main catalyst materials able to promote the formation of hydrocarbons from the electrocatalytic CO2 conversion. Herein, we describe a novel preparation method for carbon-doped copper oxide catalysts based on an oxidative thermal treatment of copper-containing deep eutectic solvents (DES). XRD and EDX analysis of the samples show that thermal treatment at 500 °C in air for a prolonged time (60 min) provides exclusively carbon-doped copper(II) oxide catalysts, whereas shorter calcination time leads to a mixture of less oxidized forms of copper (Cu2O and Cu0), CuO, and a higher carbon content from the DES. Chronoamperometry of the electrode containing the prepared materials in 0.5 M KHCO3 electrolyte show the reduction of CuO to less oxidized copper species. The materials prepared by the use of different DES, copper precursors and calcination times were used as electrocatalysts for the electrochemical CO2 reduction. Chemical analysis of the products reveal...