Luguis De los Santos Baños (original) (raw)
Uploads
Papers by Luguis De los Santos Baños
Communications in Algebra, Jan 12, 2024
arXiv (Cornell University), Oct 6, 2023
Ergodic Theory and Dynamical Systems, Nov 3, 2020
We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almo... more We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almost equicontinuous or sensitive. On the other hand, we construct a cellular automaton on a full shift (hence a transitive subshift) that is neither almost mean equicontinuous nor mean sensitive.
Dynamical Systems-an International Journal, Aug 14, 2022
Diam-mean equicontinuity is a dynamical property that has been of use in the study of non-periodi... more Diam-mean equicontinuity is a dynamical property that has been of use in the study of non-periodic order. Using some type of "local" skew product between a shift and an odometer looking cellular automaton (CA), we will show there exists an almost diammean equicontinuous CA that is not almost equicontinuous, (and hence not almost locally periodic). As an application we show that Kurka's dichotomy does not hold for diam-mean versions of sensitivity and equicontinuity. Previously we constructed a CA that is almost mean equicontinuous [3] but not almost diam-mean equicontinuous [4].
arXiv (Cornell University), Jun 18, 2021
Mean and diam-mean equicontinuity are dynamical properties that have been of use in the study of ... more Mean and diam-mean equicontinuity are dynamical properties that have been of use in the study of non-periodic order. We show that the Pacman automaton is not almost diam-mean equicontinuous (it is already known that it is almost mean equicontinuous).
En los años 1670’s, Leibniz definió la noción de los números infinitesimales. Los cuales son núme... more En los años 1670’s, Leibniz definió la noción de los números infinitesimales. Los cuales son números no cero tales que son menor que cualquier otro número real positivo. Lamentablemente no fue hasta 1961, que Robinson definió de manera rigurosa lo que es un número infinitesimal. Robinson partió de los axiomas de Zermelo y Fraenkel, y del axioma de elección (abreviado ZFC), extendió R a∗R aplicando una considerable cantidad de lógica matemática. Definiciones en análisis no-estándar pueden formularse de manera mas sencilla y los teoremas pueden ser mostrados de manera mas simple. A menudo las implicaciones son drásticas. Más aun, las definiciones y demostraciones adoptan una apariencia mas natural. Esto puede llevar al descubrimiento de nuevos resultados. El propósito de esta tesis es establecer un forma alternativa de completación de un anillo y en el camino dar demostraciones alternativas no-estándar de resultados clásicos
Diam-mean equicontinuity is a dynamical property that has been of use in the study of non-periodi... more Diam-mean equicontinuity is a dynamical property that has been of use in the study of non-periodic order. Using some type of "local" skew product between a shift and an odometer looking cellular automaton (CA) we will show there exists an almost diam-mean equicontinuous CA that is not almost equicontinuous, and hence not almost locally periodic.
We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almo... more We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almost equicontinuous or sensitive. On the other hand, we construct a cellular automaton on a full-shift (hence a transitive subshift) that is neither almost mean equicontinuous nor mean sensitive.
Mean and diam-mean equicontinuity are dynamical properties that have been of use in the study of ... more Mean and diam-mean equicontinuity are dynamical properties that have been of use in the study of non-periodic order. We show that the Pacman automaton is not almost diam-mean equicontinuous (it is already known that it is almost mean equicontinuous).
Ergodic Theory and Dynamical Systems
We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almo... more We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almost equicontinuous or sensitive. On the other hand, we construct a cellular automaton on a full shift (hence a transitive subshift) that is neither almost mean equicontinuous nor mean sensitive.
Communications in Algebra, Jan 12, 2024
arXiv (Cornell University), Oct 6, 2023
Ergodic Theory and Dynamical Systems, Nov 3, 2020
We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almo... more We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almost equicontinuous or sensitive. On the other hand, we construct a cellular automaton on a full shift (hence a transitive subshift) that is neither almost mean equicontinuous nor mean sensitive.
Dynamical Systems-an International Journal, Aug 14, 2022
Diam-mean equicontinuity is a dynamical property that has been of use in the study of non-periodi... more Diam-mean equicontinuity is a dynamical property that has been of use in the study of non-periodic order. Using some type of "local" skew product between a shift and an odometer looking cellular automaton (CA), we will show there exists an almost diammean equicontinuous CA that is not almost equicontinuous, (and hence not almost locally periodic). As an application we show that Kurka's dichotomy does not hold for diam-mean versions of sensitivity and equicontinuity. Previously we constructed a CA that is almost mean equicontinuous [3] but not almost diam-mean equicontinuous [4].
arXiv (Cornell University), Jun 18, 2021
Mean and diam-mean equicontinuity are dynamical properties that have been of use in the study of ... more Mean and diam-mean equicontinuity are dynamical properties that have been of use in the study of non-periodic order. We show that the Pacman automaton is not almost diam-mean equicontinuous (it is already known that it is almost mean equicontinuous).
En los años 1670’s, Leibniz definió la noción de los números infinitesimales. Los cuales son núme... more En los años 1670’s, Leibniz definió la noción de los números infinitesimales. Los cuales son números no cero tales que son menor que cualquier otro número real positivo. Lamentablemente no fue hasta 1961, que Robinson definió de manera rigurosa lo que es un número infinitesimal. Robinson partió de los axiomas de Zermelo y Fraenkel, y del axioma de elección (abreviado ZFC), extendió R a∗R aplicando una considerable cantidad de lógica matemática. Definiciones en análisis no-estándar pueden formularse de manera mas sencilla y los teoremas pueden ser mostrados de manera mas simple. A menudo las implicaciones son drásticas. Más aun, las definiciones y demostraciones adoptan una apariencia mas natural. Esto puede llevar al descubrimiento de nuevos resultados. El propósito de esta tesis es establecer un forma alternativa de completación de un anillo y en el camino dar demostraciones alternativas no-estándar de resultados clásicos
Diam-mean equicontinuity is a dynamical property that has been of use in the study of non-periodi... more Diam-mean equicontinuity is a dynamical property that has been of use in the study of non-periodic order. Using some type of "local" skew product between a shift and an odometer looking cellular automaton (CA) we will show there exists an almost diam-mean equicontinuous CA that is not almost equicontinuous, and hence not almost locally periodic.
We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almo... more We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almost equicontinuous or sensitive. On the other hand, we construct a cellular automaton on a full-shift (hence a transitive subshift) that is neither almost mean equicontinuous nor mean sensitive.
Mean and diam-mean equicontinuity are dynamical properties that have been of use in the study of ... more Mean and diam-mean equicontinuity are dynamical properties that have been of use in the study of non-periodic order. We show that the Pacman automaton is not almost diam-mean equicontinuous (it is already known that it is almost mean equicontinuous).
Ergodic Theory and Dynamical Systems
We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almo... more We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almost equicontinuous or sensitive. On the other hand, we construct a cellular automaton on a full shift (hence a transitive subshift) that is neither almost mean equicontinuous nor mean sensitive.