MARIA CARMEN FERNÁNDEZ FUENTES - Academia.edu (original) (raw)
Related Authors
Indian Institute of Chemical Technology
Uploads
Papers by MARIA CARMEN FERNÁNDEZ FUENTES
Journal of Medicinal Chemistry, 2012
Lysophosphatidic acid is a class of bioactive phospholipid that mediates most of its biological e... more Lysophosphatidic acid is a class of bioactive phospholipid that mediates most of its biological effects through LPA receptors, of which six isoforms have been identified. The recent results from LPA1 knockout mice suggested that blocking LPA1 signaling could provide a potential novel approach for the treatment of idiopathic pulmonary fibrosis. Here, we report the design and synthesis of pyrazole-and triazole-derived carbamates as LPA1-selective and LPA1/3 dual antagonists. In particular, compound 2, the most selective LPA1 antagonist reported, inhibited proliferation and contraction of normal human lung fibroblasts (NHLF) following LPA stimulation. Oral dosing of compound 2 to mice resulted in a dose-dependent reduction of plasma histamine levels in a murine LPA challenge model. Furthermore, we applied our novel antagonists as chemistry probes and investigated the contribution of LPA1/2/3 in mediating the pro-fibrotic responses. Our results suggest LPA1 as the major receptor subtype mediating LPA-induced proliferation and contraction of NHLF.
Journal of Medicinal Chemistry, 2012
Lysophosphatidic acid is a class of bioactive phospholipid that mediates most of its biological e... more Lysophosphatidic acid is a class of bioactive phospholipid that mediates most of its biological effects through LPA receptors, of which six isoforms have been identified. The recent results from LPA1 knockout mice suggested that blocking LPA1 signaling could provide a potential novel approach for the treatment of idiopathic pulmonary fibrosis. Here, we report the design and synthesis of pyrazole-and triazole-derived carbamates as LPA1-selective and LPA1/3 dual antagonists. In particular, compound 2, the most selective LPA1 antagonist reported, inhibited proliferation and contraction of normal human lung fibroblasts (NHLF) following LPA stimulation. Oral dosing of compound 2 to mice resulted in a dose-dependent reduction of plasma histamine levels in a murine LPA challenge model. Furthermore, we applied our novel antagonists as chemistry probes and investigated the contribution of LPA1/2/3 in mediating the pro-fibrotic responses. Our results suggest LPA1 as the major receptor subtype mediating LPA-induced proliferation and contraction of NHLF.