M. Anghelina - Academia.edu (original) (raw)

Papers by M. Anghelina

Research paper thumbnail of Changes in surface topologies of chondrocytes subjected to mechanical forces: An AFM analysis

Journal of Structural Biology, 2008

The cartilage is composed of chondrocytes embedded in a matrix of collagen fibrils interspersed w... more The cartilage is composed of chondrocytes embedded in a matrix of collagen fibrils interspersed within a network of proteoglycans and is constantly exposed to biomechanical forces during normal joint movement. Characterization of the surface morphology, cytoskeletal structure, adherance and elastic properties of these mechanotransductive cells are crucial in understanding the effects of mechanical forces around a cell and how a cell responds to changes in its physical environment. In this work, we employed the atomic force microscope (AFM) to image cultured chondrocytes before and after subjecting them to mechanical forces in the presence or absence of interleukin-1β to mimic inflammatory conditions. Nanoscale imaging and quantitative measurements from AFM data revealed that there are distinct changes in cell surface topology and cytoskeleton arrangement in the cells following treatment with mechanical forces, IL-1β or both. Our findings for the first time demonstrate that cultured chondrocytes are amenable to high-resolution AFM imaging and dynamic tensile forces may help overcome the effect of inflammatory factors on chondrocyte response.

Research paper thumbnail of Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia

Leukemia, Jan 14, 2015

High levels of miR-155 are associated with poor outcome in acute myeloid leukemia (AML). In AML, ... more High levels of miR-155 are associated with poor outcome in acute myeloid leukemia (AML). In AML, miR-155 is regulated by NF-κB, the activity of which is in part controlled by NEDD8-dependent ubiquitin ligases. We demonstrate that MLN4924, an inhibitor of NEDD8 activating enzyme (NAE) presently being evaluated in clinical trials, decreases binding of NF-κB to the miR-155 promoter and downregulates miR-155 in AML cells. This results in upregulation of the miR-155 targets SHIP1, an inhibitor of the PI3K/Akt pathway, and PU.1, a transcription factor important for myeloid differentiation, leading to monocytic differentiation and apoptosis. Consistent with these results, overexpression of miR-155 diminishes MLN4924-induced antileukemic effects. In vivo, MLN4924 reduces miR-155 expression and prolongs survival of mice engrafted with leukemic cells. Our study demonstrates the potential of miR-155 as a novel therapeutic target in AML via pharmacologic interference with NF-κB-dependent regula...

Research paper thumbnail of Monocytes and Macrophages Form Branched Cell Columns in Matrigel: Implications for a Role in Neovascularization

Stem Cells and Development, 2004

Linear arrays of cells, or cell columns, have been observed in the extracellular matrix prior to ... more Linear arrays of cells, or cell columns, have been observed in the extracellular matrix prior to neovascularization, but their nature and significance remains elusive. Based on the emerging evidence implicating a role for monocytes and macrophages (MC/MPH) in vasculogenesis, we hypothesized that MC/MPH also can form linear or branched columns, facilitating the co-migration and the spatial arrangement of other cell types. To test this hypothesis, we studied the distribution of MC/MPH effected by chemotactic migration in novel in vitro and in vivo models of development. We induced transversal and lateral migration of THP-1 monocytoid cells in Matrigel in vitro. The effect of this process on co-localization of other micro-objects was assessed using erythrocytes and micron-sized plastic beads. In vivo, we analyzed MC/MPH infiltration in subcutaneously implanted Matrigel plugs containing angiogenic factors and across a microporous filter comprising the wall of a chamber filled with Matrigel, also placed subcutaneously in mice. In vitro, we found that migrating THP-1 cells induced the lasting degradation of Matrigel and produced cell columns, a process amplified by monocyte chemoattractant protein-1 (MCP-1). We also report the co-localization of erythrocytes with THP-1 cells in cell columns. Endothelium-free tunnels containing MC/MPH, neutrophils, or erythrocytes were also observed in the Matrigel-filled chambers. In free subcutaneous Matrigel plugs, we found MC/MPH-based columns harboring isolated Tie-2 ؉ cells (a marker of endothelial progenitor phenotype), as well as fibroblasts, dendritic cells, and adypocytes. Many of these cell columns displayed conspicuous branching. Our data demonstrate formation of branched MC/MPH cell columns in vitro and in vivo, a previously unrecognized pattern of penetration of extracellular matrices by inflammatory cells. Thus, monocytes and macrophages influence the distribution of neovessels as well as their branching points. These cells are the "architects of development," assisting organogenesis, tumorigenesis, and wound healing by patterning the tissular space. 665

Research paper thumbnail of A Module of Human Peripheral Blood Mononuclear Cell Transcriptional Network Containing Primitive and Differentiation Markers Is Related to Specific Cardiovascular Health Variables

PLoS ONE, 2014

Peripheral blood mononuclear cells (PBMCs), including rare circulating stem and progenitor cells ... more Peripheral blood mononuclear cells (PBMCs), including rare circulating stem and progenitor cells (CSPCs), have important yet poorly understood roles in the maintenance and repair of blood vessels and perfused organs. Our hypothesis was that the identities and functions of CSPCs in cardiovascular health could be ascertained by analyzing the patterns of their coexpressed markers in unselected PBMC samples. Because gene microarrays had failed to detect many stem cell-associated genes, we performed quantitative real-time PCR to measure the expression of 45 primitive and tissue differentiation markers in PBMCs from healthy and hypertensive human subjects. We compared these expression levels to the subjects' demographic and cardiovascular risk factors, including vascular stiffness. The tested marker genes were expressed in all of samples and organized in hierarchical transcriptional network modules, constructed by a bottom-up approach. An index of gene expression in one of these modules (metagene), defined as the average standardized relative copy numbers of 15 pluripotency and cardiovascular differentiation markers, was negatively correlated (all p,0.03) with age (R 2 = 20.23), vascular stiffness (R 2 = 20.24), and central aortic pressure (R 2 = 20.19) and positively correlated with body mass index (R 2 = 0.72, in women). The co-expression of three neovascular markers was validated at the single-cell level using mRNA in situ hybridization and immunocytochemistry. The overall gene expression in this cardiovascular module was reduced by 72622% in the patients compared with controls. However, the compactness of both modules was increased in the patients' samples, which was reflected in reduced dispersion of their nodes' degrees of connectivity, suggesting a more primitive character of the patients' CSPCs. In conclusion, our results show that the relationship between CSPCs and vascular function is encoded in modules of the PBMCs transcriptional network. Furthermore, the coordinated gene expression in these modules can be linked to cardiovascular risk factors and subclinical cardiovascular disease; thus, this measure may be useful for their diagnosis and prognosis.

Research paper thumbnail of Biomechanical signals exert sustained attenuation of proinflammatory gene induction in articular chondrocytes

Osteoarthritis and Cartilage, 2006

Objectives: Physical therapies are commonly used for limiting joint inflammation. To gain insight... more Objectives: Physical therapies are commonly used for limiting joint inflammation. To gain insight into their mechanisms of actions for optimal usage, we examined persistence of mechanical signals generated by cyclic tensile strain (CTS) in chondrocytes, in vitro. We hypothesized that mechanical signals induce anti-inflammatory and anabolic responses that are sustained over extended periods.

Research paper thumbnail of Biomechanical Signals Suppress TAK1 Activation to Inhibit NF- B Transcriptional Activation in Fibrochondrocytes

The Journal of Immunology, 2007

Research paper thumbnail of Preferential activity of Tie2 promoter in arteriolar endothelium

Journal of Cellular and Molecular Medicine, 2005

Research paper thumbnail of Regulation of RANKL by biomechanical loading in fibrochondrocytes of meniscus

Journal of Biomechanics, 2006

We sought to determine whether fibrochondrocytes from menisci express receptor activator of NF-ka... more We sought to determine whether fibrochondrocytes from menisci express receptor activator of NF-kappaB (RANK), its ligand (RANKL), or osteoprotegerin (OPG) and, if so, whether their expression is modulated by dynamic mechanical loading under inflammatory and normal conditions. Fibrochondrocytes from rat menisci were subjected to cyclic tensile strain (CTS) at various magnitudes and frequencies in the presence or absence of interleukin (IL)-1beta for up to 24 h. In order to determine whether a possible regulatory effect of mechanical loading on RANKL and its receptors under inflamed conditions is sustained, cells were stimulated with IL-1beta for 24 h while being subjected to CTS only for the initial 4 and 8h, respectively. Regulation of RANKL, RANK, and OPG expression and synthesis were determined by semiquantitative and real-time PCR, Western blotting, and immunofluorescence. Fibrochondrocytes constitutively expressed low levels of RANKL and RANK but marked levels of OPG. IL-1beta upregulated expression and synthesis of RANKL and RANK significantly (p<0.05), whereas expression of OPG was unaffected following 4 and 24 h. When fibrochondrocytes were simultaneously subjected to CTS and IL-1beta, expression of RANKL and RANK was significantly (p<0.05) downregulated as compared to that of IL-1beta-stimulated unstretched cells. The inhibitory effect of CTS on the IL-1beta-induced upregulation of RANKL and RANK was sustained as well as magnitude and frequency dependent. Our study provides evidence that RANKL and its receptors are expressed in fibrochondrocytes from meniscus. These data also demonstrate that dynamic mechanical loading can modify the expression of RANKL and RANK in inflammatory conditions.

Research paper thumbnail of Migration of Monocytes/Macrophages In Vitro and In Vivo Is Accompanied by MMP12-dependent Tunnel Formation and by Neovascularization

Cold Spring Harbor Symposia on Quantitative Biology, 2002

Research paper thumbnail of Monocytes/Macrophages Cooperate with Progenitor Cells during Neovascularization and Tissue Repair

The American Journal of Pathology, 2006

The potential of monocytes/macrophages (MC/Mph) to contribute to neovascularization has recently ... more The potential of monocytes/macrophages (MC/Mph) to contribute to neovascularization has recently become a topic of intense scrutiny. Here, we characterized the behavior of MC/Mph in cellular infiltrates, with emphasis on their spatial organization and localization in newly formed microvessels. To this end, we studied MC/Mph migration and assembly in basic fibroblast growth factor-supplemented Matrigel plugs placed in transgenic Tie2-␤-galactosidase mice for up to 4 weeks. In these plugs, along with Nile Red-positive adipocytes, we found MC/Mph distributed in cell cords, also containing various mature and progenitor tissue cells; and functional Tie2-positive or -negative microvessels embedded in bundles of fibrillar collagen surrounded by F4/80-positive MC/Mph. At earlier stages of infiltration, we found tubular destruction of the matrix (tunnels) and MC/Mph-lined capillary-like structures occasionally containing erythrocytes, indicating their propensity for endothelial trans-differentiation. We also analyzed in vitro the MCP-1-induced chemotactic migration of fluorescently labeled peritoneal MC/Mph incorporated in Matrigel-containing fluorescent protease substrates. Many of these MC/ Mph produced MMP-12-and TIMP-1-dependent tunnels coupled with acquisition of a lumen. In conclusion, long-term implantation of Matrigel plugs qualifies as a novel experimental model of tissue regeneration, in which neovascularization intimately couples with fibrosis and organogenesis and in which cells of MC/Mph phenotype play a key structural role.

Research paper thumbnail of The effect of substrate topography on the proliferation and morphology of chondrocytes

Research paper thumbnail of Changes in surface topologies of chondrocytes subjected to mechanical forces: An AFM analysis

Journal of Structural Biology, 2008

The cartilage is composed of chondrocytes embedded in a matrix of collagen fibrils interspersed w... more The cartilage is composed of chondrocytes embedded in a matrix of collagen fibrils interspersed within a network of proteoglycans and is constantly exposed to biomechanical forces during normal joint movement. Characterization of the surface morphology, cytoskeletal structure, adherance and elastic properties of these mechanotransductive cells are crucial in understanding the effects of mechanical forces around a cell and how a cell responds to changes in its physical environment. In this work, we employed the atomic force microscope (AFM) to image cultured chondrocytes before and after subjecting them to mechanical forces in the presence or absence of interleukin-1β to mimic inflammatory conditions. Nanoscale imaging and quantitative measurements from AFM data revealed that there are distinct changes in cell surface topology and cytoskeleton arrangement in the cells following treatment with mechanical forces, IL-1β or both. Our findings for the first time demonstrate that cultured chondrocytes are amenable to high-resolution AFM imaging and dynamic tensile forces may help overcome the effect of inflammatory factors on chondrocyte response.

Research paper thumbnail of Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia

Leukemia, Jan 14, 2015

High levels of miR-155 are associated with poor outcome in acute myeloid leukemia (AML). In AML, ... more High levels of miR-155 are associated with poor outcome in acute myeloid leukemia (AML). In AML, miR-155 is regulated by NF-κB, the activity of which is in part controlled by NEDD8-dependent ubiquitin ligases. We demonstrate that MLN4924, an inhibitor of NEDD8 activating enzyme (NAE) presently being evaluated in clinical trials, decreases binding of NF-κB to the miR-155 promoter and downregulates miR-155 in AML cells. This results in upregulation of the miR-155 targets SHIP1, an inhibitor of the PI3K/Akt pathway, and PU.1, a transcription factor important for myeloid differentiation, leading to monocytic differentiation and apoptosis. Consistent with these results, overexpression of miR-155 diminishes MLN4924-induced antileukemic effects. In vivo, MLN4924 reduces miR-155 expression and prolongs survival of mice engrafted with leukemic cells. Our study demonstrates the potential of miR-155 as a novel therapeutic target in AML via pharmacologic interference with NF-κB-dependent regula...

Research paper thumbnail of Monocytes and Macrophages Form Branched Cell Columns in Matrigel: Implications for a Role in Neovascularization

Stem Cells and Development, 2004

Linear arrays of cells, or cell columns, have been observed in the extracellular matrix prior to ... more Linear arrays of cells, or cell columns, have been observed in the extracellular matrix prior to neovascularization, but their nature and significance remains elusive. Based on the emerging evidence implicating a role for monocytes and macrophages (MC/MPH) in vasculogenesis, we hypothesized that MC/MPH also can form linear or branched columns, facilitating the co-migration and the spatial arrangement of other cell types. To test this hypothesis, we studied the distribution of MC/MPH effected by chemotactic migration in novel in vitro and in vivo models of development. We induced transversal and lateral migration of THP-1 monocytoid cells in Matrigel in vitro. The effect of this process on co-localization of other micro-objects was assessed using erythrocytes and micron-sized plastic beads. In vivo, we analyzed MC/MPH infiltration in subcutaneously implanted Matrigel plugs containing angiogenic factors and across a microporous filter comprising the wall of a chamber filled with Matrigel, also placed subcutaneously in mice. In vitro, we found that migrating THP-1 cells induced the lasting degradation of Matrigel and produced cell columns, a process amplified by monocyte chemoattractant protein-1 (MCP-1). We also report the co-localization of erythrocytes with THP-1 cells in cell columns. Endothelium-free tunnels containing MC/MPH, neutrophils, or erythrocytes were also observed in the Matrigel-filled chambers. In free subcutaneous Matrigel plugs, we found MC/MPH-based columns harboring isolated Tie-2 ؉ cells (a marker of endothelial progenitor phenotype), as well as fibroblasts, dendritic cells, and adypocytes. Many of these cell columns displayed conspicuous branching. Our data demonstrate formation of branched MC/MPH cell columns in vitro and in vivo, a previously unrecognized pattern of penetration of extracellular matrices by inflammatory cells. Thus, monocytes and macrophages influence the distribution of neovessels as well as their branching points. These cells are the "architects of development," assisting organogenesis, tumorigenesis, and wound healing by patterning the tissular space. 665

Research paper thumbnail of A Module of Human Peripheral Blood Mononuclear Cell Transcriptional Network Containing Primitive and Differentiation Markers Is Related to Specific Cardiovascular Health Variables

PLoS ONE, 2014

Peripheral blood mononuclear cells (PBMCs), including rare circulating stem and progenitor cells ... more Peripheral blood mononuclear cells (PBMCs), including rare circulating stem and progenitor cells (CSPCs), have important yet poorly understood roles in the maintenance and repair of blood vessels and perfused organs. Our hypothesis was that the identities and functions of CSPCs in cardiovascular health could be ascertained by analyzing the patterns of their coexpressed markers in unselected PBMC samples. Because gene microarrays had failed to detect many stem cell-associated genes, we performed quantitative real-time PCR to measure the expression of 45 primitive and tissue differentiation markers in PBMCs from healthy and hypertensive human subjects. We compared these expression levels to the subjects' demographic and cardiovascular risk factors, including vascular stiffness. The tested marker genes were expressed in all of samples and organized in hierarchical transcriptional network modules, constructed by a bottom-up approach. An index of gene expression in one of these modules (metagene), defined as the average standardized relative copy numbers of 15 pluripotency and cardiovascular differentiation markers, was negatively correlated (all p,0.03) with age (R 2 = 20.23), vascular stiffness (R 2 = 20.24), and central aortic pressure (R 2 = 20.19) and positively correlated with body mass index (R 2 = 0.72, in women). The co-expression of three neovascular markers was validated at the single-cell level using mRNA in situ hybridization and immunocytochemistry. The overall gene expression in this cardiovascular module was reduced by 72622% in the patients compared with controls. However, the compactness of both modules was increased in the patients' samples, which was reflected in reduced dispersion of their nodes' degrees of connectivity, suggesting a more primitive character of the patients' CSPCs. In conclusion, our results show that the relationship between CSPCs and vascular function is encoded in modules of the PBMCs transcriptional network. Furthermore, the coordinated gene expression in these modules can be linked to cardiovascular risk factors and subclinical cardiovascular disease; thus, this measure may be useful for their diagnosis and prognosis.

Research paper thumbnail of Biomechanical signals exert sustained attenuation of proinflammatory gene induction in articular chondrocytes

Osteoarthritis and Cartilage, 2006

Objectives: Physical therapies are commonly used for limiting joint inflammation. To gain insight... more Objectives: Physical therapies are commonly used for limiting joint inflammation. To gain insight into their mechanisms of actions for optimal usage, we examined persistence of mechanical signals generated by cyclic tensile strain (CTS) in chondrocytes, in vitro. We hypothesized that mechanical signals induce anti-inflammatory and anabolic responses that are sustained over extended periods.

Research paper thumbnail of Biomechanical Signals Suppress TAK1 Activation to Inhibit NF- B Transcriptional Activation in Fibrochondrocytes

The Journal of Immunology, 2007

Research paper thumbnail of Preferential activity of Tie2 promoter in arteriolar endothelium

Journal of Cellular and Molecular Medicine, 2005

Research paper thumbnail of Regulation of RANKL by biomechanical loading in fibrochondrocytes of meniscus

Journal of Biomechanics, 2006

We sought to determine whether fibrochondrocytes from menisci express receptor activator of NF-ka... more We sought to determine whether fibrochondrocytes from menisci express receptor activator of NF-kappaB (RANK), its ligand (RANKL), or osteoprotegerin (OPG) and, if so, whether their expression is modulated by dynamic mechanical loading under inflammatory and normal conditions. Fibrochondrocytes from rat menisci were subjected to cyclic tensile strain (CTS) at various magnitudes and frequencies in the presence or absence of interleukin (IL)-1beta for up to 24 h. In order to determine whether a possible regulatory effect of mechanical loading on RANKL and its receptors under inflamed conditions is sustained, cells were stimulated with IL-1beta for 24 h while being subjected to CTS only for the initial 4 and 8h, respectively. Regulation of RANKL, RANK, and OPG expression and synthesis were determined by semiquantitative and real-time PCR, Western blotting, and immunofluorescence. Fibrochondrocytes constitutively expressed low levels of RANKL and RANK but marked levels of OPG. IL-1beta upregulated expression and synthesis of RANKL and RANK significantly (p<0.05), whereas expression of OPG was unaffected following 4 and 24 h. When fibrochondrocytes were simultaneously subjected to CTS and IL-1beta, expression of RANKL and RANK was significantly (p<0.05) downregulated as compared to that of IL-1beta-stimulated unstretched cells. The inhibitory effect of CTS on the IL-1beta-induced upregulation of RANKL and RANK was sustained as well as magnitude and frequency dependent. Our study provides evidence that RANKL and its receptors are expressed in fibrochondrocytes from meniscus. These data also demonstrate that dynamic mechanical loading can modify the expression of RANKL and RANK in inflammatory conditions.

Research paper thumbnail of Migration of Monocytes/Macrophages In Vitro and In Vivo Is Accompanied by MMP12-dependent Tunnel Formation and by Neovascularization

Cold Spring Harbor Symposia on Quantitative Biology, 2002

Research paper thumbnail of Monocytes/Macrophages Cooperate with Progenitor Cells during Neovascularization and Tissue Repair

The American Journal of Pathology, 2006

The potential of monocytes/macrophages (MC/Mph) to contribute to neovascularization has recently ... more The potential of monocytes/macrophages (MC/Mph) to contribute to neovascularization has recently become a topic of intense scrutiny. Here, we characterized the behavior of MC/Mph in cellular infiltrates, with emphasis on their spatial organization and localization in newly formed microvessels. To this end, we studied MC/Mph migration and assembly in basic fibroblast growth factor-supplemented Matrigel plugs placed in transgenic Tie2-␤-galactosidase mice for up to 4 weeks. In these plugs, along with Nile Red-positive adipocytes, we found MC/Mph distributed in cell cords, also containing various mature and progenitor tissue cells; and functional Tie2-positive or -negative microvessels embedded in bundles of fibrillar collagen surrounded by F4/80-positive MC/Mph. At earlier stages of infiltration, we found tubular destruction of the matrix (tunnels) and MC/Mph-lined capillary-like structures occasionally containing erythrocytes, indicating their propensity for endothelial trans-differentiation. We also analyzed in vitro the MCP-1-induced chemotactic migration of fluorescently labeled peritoneal MC/Mph incorporated in Matrigel-containing fluorescent protease substrates. Many of these MC/ Mph produced MMP-12-and TIMP-1-dependent tunnels coupled with acquisition of a lumen. In conclusion, long-term implantation of Matrigel plugs qualifies as a novel experimental model of tissue regeneration, in which neovascularization intimately couples with fibrosis and organogenesis and in which cells of MC/Mph phenotype play a key structural role.

Research paper thumbnail of The effect of substrate topography on the proliferation and morphology of chondrocytes