Magdalena Přechová - Academia.edu (original) (raw)

Uploads

Papers by Magdalena Přechová

Research paper thumbnail of pyTFM: A tool for Traction Force and Monolayer Stress Microscopy

Cellular force generation and force transduction are of fundamental importance for numerous biolo... more Cellular force generation and force transduction are of fundamental importance for numerous biological processes and can be studied with the methods of Traction Force Microscopy (TFM) and Monolayer Stress Microscopy. Traction Force Microscopy and Monolayer Stress Microscopy solve the inverse problem of reconstructing cell-matrix tractions and inter- and intra-cellular stresses from the measured cell force-induced deformations of an adhesive substrate with known elasticity. Although several laboratories have developed software for Traction Force Microscopy and Monolayer Stress Microscopy computations, there is currently no software package available that allows non-expert users to perform a full evaluation of such experiments. Here we present pyTFM, a tool to perform Traction Force Microscopy and Monolayer Stress Microscopy on single cells, cell patches and cell layers grown in a 2-dimensional environment. pyTFM was optimized for ease-of-use; it is open-source and well documented (ho...

Research paper thumbnail of Plectin-mediated cytoskeletal crosstalk controls cell tension and cohesion in epithelial sheets

Journal of Cell Biology, 2022

The coordinated interplay of cytoskeletal networks critically determines tissue biomechanics and ... more The coordinated interplay of cytoskeletal networks critically determines tissue biomechanics and structural integrity. Here, we show that plectin, a major intermediate filament-based cytolinker protein, orchestrates cortical cytoskeletal networks in epithelial sheets to support intercellular junctions. By combining CRISPR/Cas9-based gene editing and pharmacological inhibition, we demonstrate that in an F-actin–dependent context, plectin is essential for the formation of the circumferential keratin rim, organization of radial keratin spokes, and desmosomal patterning. In the absence of plectin-mediated cytoskeletal cross-linking, the aberrant keratin–desmosome (DSM)–network feeds back to the actin cytoskeleton, which results in elevated actomyosin contractility. Also, by complementing a predictive mechanical model with Förster resonance energy transfer–based tension sensors, we provide evidence that in the absence of cytoskeletal cross-linking, major intercellular junctions (adherens...

Research paper thumbnail of Mutation in PHACTR1 associated with multifocal epilepsy with infantile spasms and hypsarrhythmia

A young boy with multifocal epilepsy with infantile spasms and hypsarrhythmia with minimal organi... more A young boy with multifocal epilepsy with infantile spasms and hypsarrhythmia with minimal organic lesions of brain structures underwent DNA diagnosis using whole‐exome sequencing. A heterozygous amino‐acid substitution p.L519R in a PHACTR1 gene was identified. PHACTR1 belongs to a protein family of G‐actin binding protein phosphatase 1 (PP1) cofactors and was not previously associated with a human disease. The missense single nucleotide variant in the proband was shown to occur de novo in the paternal allele. The mutation was shown in vitro to reduce the affinity of PHACTR1 for G‐actin, and to increase its propensity to form complexes with the catalytic subunit of PP1. These properties are associated with altered subcellular localization of PHACTR1 and increased ability to induce cytoskeletal rearrangements. Although the molecular role of the PHACTR1 in neuronal excitability and differentiation remains to be defined, PHACTR1 has been previously shown to be involved in Slack channel...

Research paper thumbnail of A low-cost uniaxial cell stretcher for six parallel wells

Research paper thumbnail of Author response: Molecular basis for substrate specificity of the Phactr1/PP1 phosphatase holoenzyme

PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 t... more PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 to substrates or subcellular locations, but it remains unclear how they might confer sequence-specificity on PP1. The cytoskeletal regulator Phactr1 is a neuronally enriched PP1 cofactor that is controlled by G-actin. Structural analysis showed that Phactr1 binding remodels PP1's hydrophobic groove, creating a new composite surface adjacent to the catalytic site. Using phosphoproteomics, we identified mouse fibroblast and neuronal Phactr1/PP1 substrates, which include cytoskeletal components and regulators. We determined high-resolution structures of Phactr1/PP1 bound to the dephosphorylated forms of its substrates IRSp53 and spectrin aII. Inversion of the phosphate in these holoenzyme-product complexes supports the proposed PPPfamily catalytic mechanism. Substrate sequences C-terminal to the dephosphorylation site make intimate contacts with the composite Phactr1/PP1 surface, which are required for efficient dephosphorylation. Sequence specificity explains why Phactr1/PP1 exhibits orders-of-magnitude enhanced reactivity towards its substrates, compared to apo-PP1 or other PP1 holoenzymes.

Research paper thumbnail of Author response for "Mutation in PHACTR1 Associated with Multifocal Epilepsy with Infantile Spasms and Hypsarrhythmia

Research paper thumbnail of Vimentin Intermediate Filaments as Potential Target for Cancer Treatment

Cancers, Jan 11, 2020

Intermediate filaments constitute the third component of the cellular skeleton. Unlike actin and ... more Intermediate filaments constitute the third component of the cellular skeleton. Unlike actin and microtubule cytoskeletons, the intermediate filaments are composed of a wide variety of structurally related proteins showing distinct expression patterns in tissues and cell types. Changes in the expression patterns of intermediate filaments are often associated with cancer progression; in particular with phenotypes leading to increased cellular migration and invasion. In this review we will describe the role of vimentin intermediate filaments in cancer cell migration, cell adhesion structures, and metastasis formation. The potential for targeting vimentin in cancer treatment and the development of drugs targeting vimentin will be reviewed.

Research paper thumbnail of Author response for "Mutation in PHACTR1 Associated with Multifocal Epilepsy with Infantile Spasms and Hypsarrhythmia

Research paper thumbnail of Molecular Basis for Substrate Specificity of Protein-tyrosine Phosphatase 1B

Journal of Biological Chemistry, 1998

Research paper thumbnail of pyTFM: A tool for Traction Force and Monolayer Stress Microscopy

Cellular force generation and force transduction are of fundamental importance for numerous biolo... more Cellular force generation and force transduction are of fundamental importance for numerous biological processes and can be studied with the methods of Traction Force Microscopy (TFM) and Monolayer Stress Microscopy. Traction Force Microscopy and Monolayer Stress Microscopy solve the inverse problem of reconstructing cell-matrix tractions and inter- and intra-cellular stresses from the measured cell force-induced deformations of an adhesive substrate with known elasticity. Although several laboratories have developed software for Traction Force Microscopy and Monolayer Stress Microscopy computations, there is currently no software package available that allows non-expert users to perform a full evaluation of such experiments. Here we present pyTFM, a tool to perform Traction Force Microscopy and Monolayer Stress Microscopy on single cells, cell patches and cell layers grown in a 2-dimensional environment. pyTFM was optimized for ease-of-use; it is open-source and well documented (ho...

Research paper thumbnail of Plectin-mediated cytoskeletal crosstalk controls cell tension and cohesion in epithelial sheets

Journal of Cell Biology, 2022

The coordinated interplay of cytoskeletal networks critically determines tissue biomechanics and ... more The coordinated interplay of cytoskeletal networks critically determines tissue biomechanics and structural integrity. Here, we show that plectin, a major intermediate filament-based cytolinker protein, orchestrates cortical cytoskeletal networks in epithelial sheets to support intercellular junctions. By combining CRISPR/Cas9-based gene editing and pharmacological inhibition, we demonstrate that in an F-actin–dependent context, plectin is essential for the formation of the circumferential keratin rim, organization of radial keratin spokes, and desmosomal patterning. In the absence of plectin-mediated cytoskeletal cross-linking, the aberrant keratin–desmosome (DSM)–network feeds back to the actin cytoskeleton, which results in elevated actomyosin contractility. Also, by complementing a predictive mechanical model with Förster resonance energy transfer–based tension sensors, we provide evidence that in the absence of cytoskeletal cross-linking, major intercellular junctions (adherens...

Research paper thumbnail of Mutation in PHACTR1 associated with multifocal epilepsy with infantile spasms and hypsarrhythmia

A young boy with multifocal epilepsy with infantile spasms and hypsarrhythmia with minimal organi... more A young boy with multifocal epilepsy with infantile spasms and hypsarrhythmia with minimal organic lesions of brain structures underwent DNA diagnosis using whole‐exome sequencing. A heterozygous amino‐acid substitution p.L519R in a PHACTR1 gene was identified. PHACTR1 belongs to a protein family of G‐actin binding protein phosphatase 1 (PP1) cofactors and was not previously associated with a human disease. The missense single nucleotide variant in the proband was shown to occur de novo in the paternal allele. The mutation was shown in vitro to reduce the affinity of PHACTR1 for G‐actin, and to increase its propensity to form complexes with the catalytic subunit of PP1. These properties are associated with altered subcellular localization of PHACTR1 and increased ability to induce cytoskeletal rearrangements. Although the molecular role of the PHACTR1 in neuronal excitability and differentiation remains to be defined, PHACTR1 has been previously shown to be involved in Slack channel...

Research paper thumbnail of A low-cost uniaxial cell stretcher for six parallel wells

Research paper thumbnail of Author response: Molecular basis for substrate specificity of the Phactr1/PP1 phosphatase holoenzyme

PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 t... more PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 to substrates or subcellular locations, but it remains unclear how they might confer sequence-specificity on PP1. The cytoskeletal regulator Phactr1 is a neuronally enriched PP1 cofactor that is controlled by G-actin. Structural analysis showed that Phactr1 binding remodels PP1's hydrophobic groove, creating a new composite surface adjacent to the catalytic site. Using phosphoproteomics, we identified mouse fibroblast and neuronal Phactr1/PP1 substrates, which include cytoskeletal components and regulators. We determined high-resolution structures of Phactr1/PP1 bound to the dephosphorylated forms of its substrates IRSp53 and spectrin aII. Inversion of the phosphate in these holoenzyme-product complexes supports the proposed PPPfamily catalytic mechanism. Substrate sequences C-terminal to the dephosphorylation site make intimate contacts with the composite Phactr1/PP1 surface, which are required for efficient dephosphorylation. Sequence specificity explains why Phactr1/PP1 exhibits orders-of-magnitude enhanced reactivity towards its substrates, compared to apo-PP1 or other PP1 holoenzymes.

Research paper thumbnail of Author response for "Mutation in PHACTR1 Associated with Multifocal Epilepsy with Infantile Spasms and Hypsarrhythmia

Research paper thumbnail of Vimentin Intermediate Filaments as Potential Target for Cancer Treatment

Cancers, Jan 11, 2020

Intermediate filaments constitute the third component of the cellular skeleton. Unlike actin and ... more Intermediate filaments constitute the third component of the cellular skeleton. Unlike actin and microtubule cytoskeletons, the intermediate filaments are composed of a wide variety of structurally related proteins showing distinct expression patterns in tissues and cell types. Changes in the expression patterns of intermediate filaments are often associated with cancer progression; in particular with phenotypes leading to increased cellular migration and invasion. In this review we will describe the role of vimentin intermediate filaments in cancer cell migration, cell adhesion structures, and metastasis formation. The potential for targeting vimentin in cancer treatment and the development of drugs targeting vimentin will be reviewed.

Research paper thumbnail of Author response for "Mutation in PHACTR1 Associated with Multifocal Epilepsy with Infantile Spasms and Hypsarrhythmia

Research paper thumbnail of Molecular Basis for Substrate Specificity of Protein-tyrosine Phosphatase 1B

Journal of Biological Chemistry, 1998