Michał Wrzesiński - Academia.edu (original) (raw)

Uploads

Papers by Michał Wrzesiński

Research paper thumbnail of Mutagenic potency of MMS-induced 1meA/3meC lesions in E. coli

Environmental and Molecular Mutagenesis, 2009

The mutagenic activity of MMS in E. coli depends on the susceptibility of DNA bases to methylatio... more The mutagenic activity of MMS in E. coli depends on the susceptibility of DNA bases to methylation and their repair by cellular defense systems. Among the lesions in methylated DNA is 1meA/3meC, which is recently recognized as being mutagenic. In this report, special attention is focused on the mutagenic properties of 1meA/3meC which, by the activity of AlkB-dioxygenase, are quickly and efficiently converted to natural A/C bases in the DNA of E. coli alkB(+) strains, preventing 1meA/3meC-induced mutations. We have found that in the absence of AlkB-mediated repair, MMS treatment results in an increased frequency of four types of base substitutions: GC-->CG, GC-->TA, AT-->CG, and AT-->TA, whereas overproduction of PolV in CC101-106 alkB(-)/pRW134 strains leads to a markedly elevated level of GC-->TA, GC-->CG, and AT-->TA transversions. It has been observed that in the case of AB1157 alkB(-) strains, the MMS-induced and 1meA/3meC-dependent argE3-->Arg(+) reversion occurs efficiently, whereas lacZ(-)--> Lac(+) reversion in a set of CC101-106 alkB(-) strains occurs with much lower frequency. We considered several reasons for this discrepancy, namely, the possible variance in the level of the PolV activity, the effect of the PolIV contents that is higher in CC101-106 than in AB1157 strains and the different genetic cell backgrounds in CC101-106 alkB(-) and AB1157 alkB(-) strains, respectively. We postulate that the difference in the number of targets undergoing mutation and different reactivity of MMS with ssDNA and dsDNA are responsible for the high (argE3-->Arg(+)) and low (lacZ(-) --> Lac(+)) frequency of MMS-induced mutations.

Research paper thumbnail of Pseudomonas putida AlkA and AlkB Proteins Comprise Different Defense Systems for the Repair of Alkylation Damage to DNA – In Vivo, In Vitro, and In Silico Studies

PLoS ONE, 2013

Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction ... more Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against alkylating agents of exo-and endogenous origin. Figure 2. The multiple protein alignment of E. coli K-12 DH10B EcAlkA (locus tag: ECDH10B_2218), P. putida KT2440 PpAlkA (PP_0705), P. putida GB-1 PpAlkA2 (PputGB1_2545), and D. radiodurans DrAlkA (DR_2584) generated with ClustalW (A).

Research paper thumbnail of Mutagenic potency of MMS-induced 1meA/3meC lesions in E. coli

Environmental and Molecular Mutagenesis, 2009

The mutagenic activity of MMS in E. coli depends on the susceptibility of DNA bases to methylatio... more The mutagenic activity of MMS in E. coli depends on the susceptibility of DNA bases to methylation and their repair by cellular defense systems. Among the lesions in methylated DNA is 1meA/3meC, which is recently recognized as being mutagenic. In this report, special attention is focused on the mutagenic properties of 1meA/3meC which, by the activity of AlkB-dioxygenase, are quickly and efficiently converted to natural A/C bases in the DNA of E. coli alkB(+) strains, preventing 1meA/3meC-induced mutations. We have found that in the absence of AlkB-mediated repair, MMS treatment results in an increased frequency of four types of base substitutions: GC-->CG, GC-->TA, AT-->CG, and AT-->TA, whereas overproduction of PolV in CC101-106 alkB(-)/pRW134 strains leads to a markedly elevated level of GC-->TA, GC-->CG, and AT-->TA transversions. It has been observed that in the case of AB1157 alkB(-) strains, the MMS-induced and 1meA/3meC-dependent argE3-->Arg(+) reversion occurs efficiently, whereas lacZ(-)--> Lac(+) reversion in a set of CC101-106 alkB(-) strains occurs with much lower frequency. We considered several reasons for this discrepancy, namely, the possible variance in the level of the PolV activity, the effect of the PolIV contents that is higher in CC101-106 than in AB1157 strains and the different genetic cell backgrounds in CC101-106 alkB(-) and AB1157 alkB(-) strains, respectively. We postulate that the difference in the number of targets undergoing mutation and different reactivity of MMS with ssDNA and dsDNA are responsible for the high (argE3-->Arg(+)) and low (lacZ(-) --> Lac(+)) frequency of MMS-induced mutations.

Research paper thumbnail of Pseudomonas putida AlkA and AlkB Proteins Comprise Different Defense Systems for the Repair of Alkylation Damage to DNA – In Vivo, In Vitro, and In Silico Studies

PLoS ONE, 2013

Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction ... more Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against alkylating agents of exo-and endogenous origin. Figure 2. The multiple protein alignment of E. coli K-12 DH10B EcAlkA (locus tag: ECDH10B_2218), P. putida KT2440 PpAlkA (PP_0705), P. putida GB-1 PpAlkA2 (PputGB1_2545), and D. radiodurans DrAlkA (DR_2584) generated with ClustalW (A).