Majid Mirabolghasemi - Academia.edu (original) (raw)
Uploads
Papers by Majid Mirabolghasemi
Tissue equivalent thermoluminescence dosimeters (TLDs) are commonly used for monitoring dose of i... more Tissue equivalent thermoluminescence dosimeters (TLDs) are commonly used for monitoring dose of ionizing radiation as personal or medical radiation dosimeters. The commercially available macro-scale lithium tetra borates (LTB) have several drawbacks such as poor Thermoluminescent (TL) intensity, limited dose linearity, losses information with time (fading) and energy dependence, which might be improved by using nano-scale activated LTB, the main goal of this study. LTB is the most popular material for radiation dosimetry because of its effective atomic number (Zeff = 7.4) that close with the Zeff of human tissue (7.42). Furthermore, LTB is almost stable chemical compound and can be easily doped with TL sensitizers. In line with this development the objectives of this work were to synthesize and to investigate the structural characteristics and TL properties of undoped LTB and silver and copper doped LTB (LTB-Ag and LTB-Cu) nanoparticles for dosimetric applications. The LTB nanoparti...
Tissue equivalent thermoluminescence dosimeters (TLDs) are commonly used for monitoring dose of i... more Tissue equivalent thermoluminescence dosimeters (TLDs) are commonly used for monitoring dose of ionizing radiation as personal or medical radiation dosimeters. The commercially available macro-scale lithium tetra borates (LTB) have several drawbacks such as poor Thermoluminescent (TL) intensity, limited dose linearity, losses information with time (fading) and energy dependence, which might be improved by using nano-scale activated LTB, the main goal of this study. LTB is the most popular material for radiation dosimetry because of its effective atomic number (Zeff = 7.4) that close with the Zeff of human tissue (7.42). Furthermore, LTB is almost stable chemical compound and can be easily doped with TL sensitizers. In line with this development the objectives of this work were to synthesize and to investigate the structural characteristics and TL properties of undoped LTB and silver and copper doped LTB (LTB-Ag and LTB-Cu) nanoparticles for dosimetric applications. The LTB nanoparti...