Muthiah Manoharan - Academia.edu (original) (raw)
Papers by Muthiah Manoharan
Nucleic Acids Research
Eighteen nucleic acid therapeutics have been approved for treatment of various diseases in the la... more Eighteen nucleic acid therapeutics have been approved for treatment of various diseases in the last 25 years. Their modes of action include antisense oligonucleotides (ASOs), splice-switching oligonucleotides (SSOs), RNA interference (RNAi) and an RNA aptamer against a protein. Among the diseases targeted by this new class of drugs are homozygous familial hypercholesterolemia, spinal muscular atrophy, Duchenne muscular dystrophy, hereditary transthyretin-mediated amyloidosis, familial chylomicronemia syndrome, acute hepatic porphyria, and primary hyperoxaluria. Chemical modification of DNA and RNA was central to making drugs out of oligonucleotides. Oligonucleotide therapeutics brought to market thus far contain just a handful of first- and second-generation modifications, among them 2′-fluoro-RNA, 2′-O-methyl RNA and the phosphorothioates that were introduced over 50 years ago. Two other privileged chemistries are 2′-O-(2-methoxyethyl)-RNA (MOE) and the phosphorodiamidate morpholin...
Molecules
The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting a... more The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting areas for oligonucleotide therapeutics. A major breakthrough in this field was the development of multifunctional GalNAc-oligonucleotides with high affinity to asialoglycoprotein receptors (ASGPR) that directed therapeutic oligonucleotides to hepatocytes. In the present study, we explore the use of G-rich sequences functionalized with one unit of GalNAc at the 3′-end for the formation of tetrameric GalNAc nanostructures upon formation of a parallel G-quadruplex. These compounds are expected to facilitate the synthetic protocols by providing the multifunctionality needed for the binding to ASGPR. To this end, several G-rich oligonucleotides carrying a TGGGGGGT sequence at the 3′-end functionalized with one molecule of N-acetylgalactosamine (GalNAc) were synthesized together with appropriate control sequences. The formation of a self-assembled parallel G-quadruplex was confirmed through var...
Nucleic Acids Research, 2021
In order to achieve efficient therapeutic post-transcriptional gene-silencing mediated by the RNA... more In order to achieve efficient therapeutic post-transcriptional gene-silencing mediated by the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) must be chemically modified. Several supra-RNA structures, with the potential to stabilize siRNAs metabolically have been evaluated for their ability to induce gene silencing, but all have limitations or have not been explored in therapeutically relevant contexts. Covalently closed circular RNA transcripts are prevalent in eukaryotes and have potential as biomarkers and disease targets, and circular RNA mimics are being explored for use as therapies. Here we report the synthesis and evaluation of small circular interfering RNAs (sciRNAs). To synthesize sciRNAs, a sense strand functionalized with the trivalent N-acetylgalactosamine (GalNAc) ligand and cyclized using ‘click’ chemistry was annealed to an antisense strand. This strategy was used for synthesis of small circles, but could also be used for synthesis of larger circula...
Nucleic Acids Research, 2020
Various chemical modifications have been identified that enhance potency of small interfering RNA... more Various chemical modifications have been identified that enhance potency of small interfering RNAs (siRNAs) and that reduce off-target effects, immune stimulation, and toxicities of metabolites of these therapeutic agents. We previously described 5′-C-methyl pyrimidine nucleotides also modified at the 2′ position of the sugar. Here, we describe the synthesis of 2′-position unmodified 5′-(R)- and 5′-(S)-C-methyl guanosine and evaluation of these nucleotides in the context of siRNA. The (R) isomer provided protection from 5′ exonuclease and the (S) isomer provided protection from 3′ exonuclease in the context of a terminally modified oligonucleotide. siRNA potency was maintained when these modifications were incorporated at the tested positions of sense and antisense strands. Moreover, the corresponding 5′ triphosphates were not substrates for mitochondrial DNA polymerase. Models generated based on crystal structures of 5′ and 3′ exonuclease oligonucleotide complexes with 5′-(R)- and ...
Nucleic Acids Research, 2021
We recently reported the synthesis of 2′-fluorinated Northern-methanocarbacyclic (2′-F-NMC) nucle... more We recently reported the synthesis of 2′-fluorinated Northern-methanocarbacyclic (2′-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2′-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2′-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5′ phosphate, suggesting that the 2′-F-NMC is a poor substrate for 5′ kinases. In mice, the 2′-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2′-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5′-phosphate mimic 5′-(E)-vinylphosphonate was attached to th...
Nucleic Acids Research, 2020
In this report, we investigated the hexopyranose chemical modification Altriol Nucleic Acid (ANA)... more In this report, we investigated the hexopyranose chemical modification Altriol Nucleic Acid (ANA) within small interfering RNA (siRNA) duplexes that were otherwise fully modified with the 2′-deoxy-2′-fluoro and 2′-O-methyl pentofuranose chemical modifications. The siRNAs were designed to silence the transthyretin (Ttr) gene and were conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Sense and antisense strands of the parent duplex were synthesized with single ANA residues at each position on the strand, and the resulting siRNAs were evaluated for their ability to inhibit Ttr mRNA expression in vitro. Although ANA residues were detrimental at the 5′ end of the antisense strand, the siRNAs with ANA at position 6 or 7 in the seed region had activity comparable to the parent. The siRNA with ANA at position 7 in the seed region was active in a mouse model. An Oligonucleotide with ANA at the 5′ end was more stable in the presence of 5′-ex...
Chemical Communications, 2019
Blocking 5′-phosphorylation of the sense strand favours selective loading of the antisense strand... more Blocking 5′-phosphorylation of the sense strand favours selective loading of the antisense strand into RISC complex.
Accounts of Chemical Research, 2019
Efforts to chemically modify nucleic acids got underway merely a decade after the discovery of th... more Efforts to chemically modify nucleic acids got underway merely a decade after the discovery of the DNA double helix and initially targeted nucleosides and nucleotides. The origins of three analogues that remain staples of modification strategies and figure prominently in FDA-approved nucleic acid therapeutics can be traced to the 1960s: 2′-deoxy-2′-fluoro-RNA (2′-F RNA), 2′-O-methyl-RNA (2′-OMe RNA), and the phosphorothioates (PS-DNA/RNA). Progress in nucleoside phosphoramidite-based solid phase oligonucleotide synthesis has gone hand in hand with the creation of secondgeneration (e.g., 2′-O-(2-methoxyethyl)-RNA, MOE-RNA) and thirdgeneration (e.g., bicyclic nucleic acids, BNAs) analogues, giving rise to an expanding universe of modified nucleic acids. Thus, beyond sitespecifically altered DNAs and RNAs with a modified base, sugar, and/ or phosphate backbone moieties, nucleic acid chemists have created a host of conjugated oligonucleotides and artificial genetic polymers (XNAs). The search for oligonucleotides with therapeutic efficacy constitutes a significant driving force for these investigations. However, nanotechnology, diagnostics, synthetic biology and genetics, nucleic acid etiology, and basic research directed at the properties of native and artificial pairing systems have all stimulated the design of ever more diverse modifications. Modification of nucleic acids can affect pairing and chemical stability, conformation and interactions with a flurry of proteins and enzymes that play important roles in uptake, transport or processing of targets. Enhancement of metabolic stability is a central concern in the design of antisense, siRNA and aptamer oligonucleotides for therapeutic applications. In the antisense approach, uniformly modified oligonucleotides or so-called gapmers are used to target a specific RNA. The former may sterically block transcription or direct alternative splicing, whereas the latter feature a central PS window that elicits RNase H-mediated cleavage of the target. The key enzyme in RNA interference (RNAi) is Argonaute 2 (Ago2), a dynamic multidomain enzyme that binds multiple regions of the guide (antisense) and passenger (sense) siRNAs. The complexity of the individual interactions between Ago2 and the siRNA duplex provides significant challenges for chemical modification. Therefore, a uniform (the same modification throughout, e.g., antisense) or nearly uniform (e.g., aptamer) modification strategy is less useful in the pursuit of siRNA therapeutic leads. Instead, unique structural features and protein interactions of 5′-end (guide/ Ago2MID domain), seed region, central region (cleavage site/Ago2 PIWI domain), and 3′-terminal nucleotides (guide/Ago2 PAZ domain) demand a more nuanced approach in the design of chemically modified siRNAs for therapeutic use. This Account summarizes current siRNA modification strategies with an emphasis on the regio-specific interactions between oligonucleotide and Ago2 and how these affect the choice of modification and optimization of siRNA efficacy. In addition to standard assays applied to measure the effects of modification on the stability of pairing and resistance against nuclease degradation, structural insights based on crystallographic data for modified RNAs alone and in complex with Ago2 from molecular modeling studies are a valuable guide in the design of siRNA therapeutics. Thus, this comprehensive approach is expected to result in accelerated generation of new siRNA-based therapies against various diseases, now that the first siRNA has obtained approval by the US FDA for treatment of hereditary hATTR amyloidosis.
Journal of medicinal chemistry, Jan 8, 2018
stable phosphate mimic at the 5′-end of the antisense strand, enhances the in vivo potency of siR... more stable phosphate mimic at the 5′-end of the antisense strand, enhances the in vivo potency of siRNA. Here we describe a straightforward synthetic approach to incorporate a nucleotide carrying a vinylphosphonate (VP) moiety at the 5′-end of oligonucleotides under standard solid-phase synthesis and deprotection conditions by utilizing pivaloyloxymethyl (POM) protected VP-nucleoside phosphoramidites. The POM protection enhances scope and scalability of 5′-VP-modified oligonucleotides and, in a broader sense, the synthesis of oligonucleotides modified with phosphonate moieties. Trivalent N-acetylgalactosamineconjugated small interfering RNA (GalNAc-siRNA) comprising (E)-geometrical isomer of VP showed improved RISC loading with robust RNAi-mediated gene silencing in mice compared to the corresponding (Z)-isomer despite similar tissue accumulation. We also obtained structural insights into why bulkier 2′ribosugar substitutions such as 2′-O-[2-(methylamino)-2-oxoethyl] are well tolerated only when combined with 5′-(E)-VP.
Nucleic acids research, Jan 11, 2018
Chemical modification is a prerequisite of oligonucleotide therapeutics for improved metabolic st... more Chemical modification is a prerequisite of oligonucleotide therapeutics for improved metabolic stability, uptake and activity, irrespective of their mode of action, i.e. antisense, RNAi or aptamer. Phosphate moiety and ribose C2'/O2' atoms are the most common sites for modification. Compared to 2'-O-substituents, ribose 4'-C-substituents lie in proximity of both the 3'- and 5'-adjacent phosphates. To investigate potentially beneficial effects on nuclease resistance we combined 2'-F and 2'-OMe with 4'-Cα- and 4'-Cβ-OMe, and 2'-F with 4'-Cα-methyl modification. The α- and β-epimers of 4'-C-OMe-uridine and the α-epimer of 4'-C-Me-uridine monomers were synthesized and incorporated into siRNAs. The 4'α-epimers affect thermal stability only minimally and show increased nuclease stability irrespective of the 2'-substituent (H, F, OMe). The 4'β-epimers are strongly destabilizing, but afford complete resistance against an ex...
Nature communications, Feb 19, 2018
Small interfering RNAs (siRNAs) conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand a... more Small interfering RNAs (siRNAs) conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand are being evaluated in investigational clinical studies for a variety of indications. The typical development candidate selection process includes evaluation of the most active compounds for toxicity in rats at pharmacologically exaggerated doses. The subset of GalNAc-siRNAs that show rat hepatotoxicity is not advanced to clinical development. Potential mechanisms of hepatotoxicity can be associated with the intracellular accumulation of oligonucleotides and their metabolites, RNA interference (RNAi)-mediated hybridization-based off-target effects, and/or perturbation of endogenous RNAi pathways. Here we show that rodent hepatotoxicity observed at supratherapeutic exposures can be largely attributed to RNAi-mediated off-target effects, but not chemical modifications or the perturbation of RNAi pathways. Furthermore, these off-target effects can be mitigated by modulating seed-pairing usin...
Journal of the American Chemical Society, 2017
We designed novel 4′-modified 2′-deoxy-2′-fluorouridine (2′-F U) analogues with the aim to improv... more We designed novel 4′-modified 2′-deoxy-2′-fluorouridine (2′-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4′-C-methoxy (4′-OMe) as the alpha (C4′α) or beta (C4′β) epimers. The C4′α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2′-F U. 1 H NMR analysis and computational investigation of the α-epimer revealed that the 4′-OMe imparts a conformational bias toward the NorthEast sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodified nucleotides, whereas the β-epimer led to significant destabilization. Both 4′-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4′-OMe substituent and the vicinal 5′-and 3′-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4′α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2′-F U.
Journal of the American Chemical Society, Jun 1, 2017
Here we report the investigation of glycol nucleic acid (GNA), an acyclic nucleic acid analog, as... more Here we report the investigation of glycol nucleic acid (GNA), an acyclic nucleic acid analog, as a modification of siRNA duplexes. We evaluated the impact of (S)- or (R)-GNA nucleotide incorporation on RNA duplex structure by determining three individual crystal structures. These structures indicate that the (S)-nucleotide backbone adopts a conformation that has little impact on the overall duplex structure, while the (R)-nucleotide disrupts the phosphate backbone and hydrogen bonding of an adjacent base pair. In addition, the GNA-T nucleobase adopts a rotated conformation in which the 5-methyl group points into the minor groove, rather than the major groove in a normal Watson-Crick base pair. This observation of reverse Watson-Crick base pairing is further supported by thermal melting analysis of GNA-C and GNA-G containing duplexes where it was demonstrated that a higher thermal stability was associated with isoguanine and isocytosine base pairing, respectively, over the canonical...
Nucleic acids research, May 15, 2016
Efficient gene silencing by RNA interference (RNAi) in vivo requires the recognition and binding ... more Efficient gene silencing by RNA interference (RNAi) in vivo requires the recognition and binding of the 5-phosphate of the guide strand of an siRNA by the Argonaute protein. However, for exogenous siRNAs it is limited by the rapid removal of the 5-phosphate of the guide strand by metabolic enzymes. Here, we have determined the crystal structure of human Argonaute-2 in complex with the metabolically stable 5-(E)-vinylphosphonate (5-E-VP) guide RNA at 2.5-Å resolution. The structure demonstrates how the 5 binding site in the Mid domain of human Argonaute-2 is able to adjust the key residues in the 5-nucleotide binding pocket to compensate for the change introduced by the modified nucleotide. This observation also explains improved binding affinity of the 5-E-VP-modified siRNA to human Argonaute-2 in-vitro, as well as the enhanced silencing in the context of the trivalent N-acetylgalactosamine (GalNAc)conjugated siRNA in mice relative to the unmodified siRNA.
ACS chemical biology, Jan 17, 2015
5'-Phosphorylation is a critical step in the cascade of events that leads to loading of small... more 5'-Phosphorylation is a critical step in the cascade of events that leads to loading of small interfering RNAs (siRNAs) into the RNA-induced silencing complex (RISC) to elicit gene silencing. 5'-Phosphorylation of exogenous siRNAs is generally accomplished by a cytosolic Clp1 kinase, and in most cases, the presence of a 5'-monophosphate on synthetic siRNAs is not a prerequisite for activity. Chemically introduced, metabolically stable 5'-phosphate mimics can lead to higher metabolic stability, increased RISC loading, and higher gene silencing activities of chemically modified siRNAs,. In this study, we report the synthesis of 5'-C-malonyl RNA, a 5'-monophosphate bioisostere. A 5'-C-malonyl-modified nucleotide was incorporated at the 5'-terminus of chemically modified RNA oligonucleotides using solid-phase synthesis. In vitro silencing activity, in vitro metabolic stability, and in vitro RISC loading of 5'-C-malonyl siRNA was compared to correspond...
Molecular therapy. Nucleic acids, Jan 3, 2015
The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthe... more The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthesis pathway. Induction of the first enzyme 5-aminolevulinic acid synthase 1 (ALAS1) by triggers such as fasting or drug exposure can lead to accumulation of neurotoxic heme intermediates that cause disease symptoms. We have demonstrated that hepatic ALAS1 silencing using siRNA in a lipid nanoparticle effectively prevents and treats induced attacks in a mouse model of acute intermittent porphyria. Herein, we report the development of ALN-AS1, an investigational GalNAc-conjugated RNAi therapeutic targeting ALAS1. One challenge in advancing ALN-AS1 to patients is the inability to detect liver ALAS1 mRNA in the absence of liver biopsies. We here describe a less invasive circulating extracellular RNA detection assay to monitor RNAi drug activity in serum and urine. A striking correlation in ALAS1 mRNA was observed across liver, serum, and urine in both rodents and nonhuman primates (NHPs) fol...
Nature biotechnology, Jan 20, 2015
A central hurdle in developing small interfering RNAs (siRNAs) as therapeutics is the inefficienc... more A central hurdle in developing small interfering RNAs (siRNAs) as therapeutics is the inefficiency of their delivery across the plasma and endosomal membranes to the cytosol, where they interact with the RNA interference machinery. With the aim of improving endosomal release, a poorly understood and inefficient process, we studied the uptake and cytosolic release of siRNAs, formulated in lipoplexes or lipid nanoparticles, by live-cell imaging and correlated it with knockdown of a target GFP reporter. siRNA release occurred invariably from maturing endosomes within ∼5-15 min of endocytosis. Cytosolic galectins immediately recognized the damaged endosome and targeted it for autophagy. However, inhibiting autophagy did not enhance cytosolic siRNA release. Gene knockdown occurred within a few hours of release and required <2,000 copies of cytosolic siRNAs. The ability to detect cytosolic release of siRNAs and understand how it is regulated will facilitate the development of rational ...
Molecular Therapy - Nucleic Acids, 2012
Leukocytes are central regulators of inflammation and the target cells of therapies for key disea... more Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-(TNF) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.
RNA, 2012
Since the discovery of RNA interference (RNAi), researchers have identified a variety of small in... more Since the discovery of RNA interference (RNAi), researchers have identified a variety of small interfering RNA (siRNA) structures that demonstrate the ability to silence gene expression through the classical RISC-mediated mechanism. One such structure, termed “Dicer-substrate siRNA” (dsiRNA), was proposed to have enhanced potency via RISC-mediated gene silencing, although a comprehensive comparison of canonical siRNAs and dsiRNAs remains to be described. The present study evaluates the in vitro and in vivo activities of siRNAs and dsiRNAs targeting Phosphatase and Tensin Homolog (PTEN) and Factor VII (FVII). More than 250 compounds representing both siRNA and dsiRNA structures were evaluated for silencing efficacy. Lead compounds were assessed for duration of silencing and other key parameters such as cytokine induction. We identified highly active compounds from both canonical siRNAs and 25/27 dsiRNAs. Lead compounds were comparable in potency both in vitro and in vivo as well as d...
Nucleic Acids Research
Eighteen nucleic acid therapeutics have been approved for treatment of various diseases in the la... more Eighteen nucleic acid therapeutics have been approved for treatment of various diseases in the last 25 years. Their modes of action include antisense oligonucleotides (ASOs), splice-switching oligonucleotides (SSOs), RNA interference (RNAi) and an RNA aptamer against a protein. Among the diseases targeted by this new class of drugs are homozygous familial hypercholesterolemia, spinal muscular atrophy, Duchenne muscular dystrophy, hereditary transthyretin-mediated amyloidosis, familial chylomicronemia syndrome, acute hepatic porphyria, and primary hyperoxaluria. Chemical modification of DNA and RNA was central to making drugs out of oligonucleotides. Oligonucleotide therapeutics brought to market thus far contain just a handful of first- and second-generation modifications, among them 2′-fluoro-RNA, 2′-O-methyl RNA and the phosphorothioates that were introduced over 50 years ago. Two other privileged chemistries are 2′-O-(2-methoxyethyl)-RNA (MOE) and the phosphorodiamidate morpholin...
Molecules
The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting a... more The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting areas for oligonucleotide therapeutics. A major breakthrough in this field was the development of multifunctional GalNAc-oligonucleotides with high affinity to asialoglycoprotein receptors (ASGPR) that directed therapeutic oligonucleotides to hepatocytes. In the present study, we explore the use of G-rich sequences functionalized with one unit of GalNAc at the 3′-end for the formation of tetrameric GalNAc nanostructures upon formation of a parallel G-quadruplex. These compounds are expected to facilitate the synthetic protocols by providing the multifunctionality needed for the binding to ASGPR. To this end, several G-rich oligonucleotides carrying a TGGGGGGT sequence at the 3′-end functionalized with one molecule of N-acetylgalactosamine (GalNAc) were synthesized together with appropriate control sequences. The formation of a self-assembled parallel G-quadruplex was confirmed through var...
Nucleic Acids Research, 2021
In order to achieve efficient therapeutic post-transcriptional gene-silencing mediated by the RNA... more In order to achieve efficient therapeutic post-transcriptional gene-silencing mediated by the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) must be chemically modified. Several supra-RNA structures, with the potential to stabilize siRNAs metabolically have been evaluated for their ability to induce gene silencing, but all have limitations or have not been explored in therapeutically relevant contexts. Covalently closed circular RNA transcripts are prevalent in eukaryotes and have potential as biomarkers and disease targets, and circular RNA mimics are being explored for use as therapies. Here we report the synthesis and evaluation of small circular interfering RNAs (sciRNAs). To synthesize sciRNAs, a sense strand functionalized with the trivalent N-acetylgalactosamine (GalNAc) ligand and cyclized using ‘click’ chemistry was annealed to an antisense strand. This strategy was used for synthesis of small circles, but could also be used for synthesis of larger circula...
Nucleic Acids Research, 2020
Various chemical modifications have been identified that enhance potency of small interfering RNA... more Various chemical modifications have been identified that enhance potency of small interfering RNAs (siRNAs) and that reduce off-target effects, immune stimulation, and toxicities of metabolites of these therapeutic agents. We previously described 5′-C-methyl pyrimidine nucleotides also modified at the 2′ position of the sugar. Here, we describe the synthesis of 2′-position unmodified 5′-(R)- and 5′-(S)-C-methyl guanosine and evaluation of these nucleotides in the context of siRNA. The (R) isomer provided protection from 5′ exonuclease and the (S) isomer provided protection from 3′ exonuclease in the context of a terminally modified oligonucleotide. siRNA potency was maintained when these modifications were incorporated at the tested positions of sense and antisense strands. Moreover, the corresponding 5′ triphosphates were not substrates for mitochondrial DNA polymerase. Models generated based on crystal structures of 5′ and 3′ exonuclease oligonucleotide complexes with 5′-(R)- and ...
Nucleic Acids Research, 2021
We recently reported the synthesis of 2′-fluorinated Northern-methanocarbacyclic (2′-F-NMC) nucle... more We recently reported the synthesis of 2′-fluorinated Northern-methanocarbacyclic (2′-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2′-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2′-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5′ phosphate, suggesting that the 2′-F-NMC is a poor substrate for 5′ kinases. In mice, the 2′-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2′-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5′-phosphate mimic 5′-(E)-vinylphosphonate was attached to th...
Nucleic Acids Research, 2020
In this report, we investigated the hexopyranose chemical modification Altriol Nucleic Acid (ANA)... more In this report, we investigated the hexopyranose chemical modification Altriol Nucleic Acid (ANA) within small interfering RNA (siRNA) duplexes that were otherwise fully modified with the 2′-deoxy-2′-fluoro and 2′-O-methyl pentofuranose chemical modifications. The siRNAs were designed to silence the transthyretin (Ttr) gene and were conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Sense and antisense strands of the parent duplex were synthesized with single ANA residues at each position on the strand, and the resulting siRNAs were evaluated for their ability to inhibit Ttr mRNA expression in vitro. Although ANA residues were detrimental at the 5′ end of the antisense strand, the siRNAs with ANA at position 6 or 7 in the seed region had activity comparable to the parent. The siRNA with ANA at position 7 in the seed region was active in a mouse model. An Oligonucleotide with ANA at the 5′ end was more stable in the presence of 5′-ex...
Chemical Communications, 2019
Blocking 5′-phosphorylation of the sense strand favours selective loading of the antisense strand... more Blocking 5′-phosphorylation of the sense strand favours selective loading of the antisense strand into RISC complex.
Accounts of Chemical Research, 2019
Efforts to chemically modify nucleic acids got underway merely a decade after the discovery of th... more Efforts to chemically modify nucleic acids got underway merely a decade after the discovery of the DNA double helix and initially targeted nucleosides and nucleotides. The origins of three analogues that remain staples of modification strategies and figure prominently in FDA-approved nucleic acid therapeutics can be traced to the 1960s: 2′-deoxy-2′-fluoro-RNA (2′-F RNA), 2′-O-methyl-RNA (2′-OMe RNA), and the phosphorothioates (PS-DNA/RNA). Progress in nucleoside phosphoramidite-based solid phase oligonucleotide synthesis has gone hand in hand with the creation of secondgeneration (e.g., 2′-O-(2-methoxyethyl)-RNA, MOE-RNA) and thirdgeneration (e.g., bicyclic nucleic acids, BNAs) analogues, giving rise to an expanding universe of modified nucleic acids. Thus, beyond sitespecifically altered DNAs and RNAs with a modified base, sugar, and/ or phosphate backbone moieties, nucleic acid chemists have created a host of conjugated oligonucleotides and artificial genetic polymers (XNAs). The search for oligonucleotides with therapeutic efficacy constitutes a significant driving force for these investigations. However, nanotechnology, diagnostics, synthetic biology and genetics, nucleic acid etiology, and basic research directed at the properties of native and artificial pairing systems have all stimulated the design of ever more diverse modifications. Modification of nucleic acids can affect pairing and chemical stability, conformation and interactions with a flurry of proteins and enzymes that play important roles in uptake, transport or processing of targets. Enhancement of metabolic stability is a central concern in the design of antisense, siRNA and aptamer oligonucleotides for therapeutic applications. In the antisense approach, uniformly modified oligonucleotides or so-called gapmers are used to target a specific RNA. The former may sterically block transcription or direct alternative splicing, whereas the latter feature a central PS window that elicits RNase H-mediated cleavage of the target. The key enzyme in RNA interference (RNAi) is Argonaute 2 (Ago2), a dynamic multidomain enzyme that binds multiple regions of the guide (antisense) and passenger (sense) siRNAs. The complexity of the individual interactions between Ago2 and the siRNA duplex provides significant challenges for chemical modification. Therefore, a uniform (the same modification throughout, e.g., antisense) or nearly uniform (e.g., aptamer) modification strategy is less useful in the pursuit of siRNA therapeutic leads. Instead, unique structural features and protein interactions of 5′-end (guide/ Ago2MID domain), seed region, central region (cleavage site/Ago2 PIWI domain), and 3′-terminal nucleotides (guide/Ago2 PAZ domain) demand a more nuanced approach in the design of chemically modified siRNAs for therapeutic use. This Account summarizes current siRNA modification strategies with an emphasis on the regio-specific interactions between oligonucleotide and Ago2 and how these affect the choice of modification and optimization of siRNA efficacy. In addition to standard assays applied to measure the effects of modification on the stability of pairing and resistance against nuclease degradation, structural insights based on crystallographic data for modified RNAs alone and in complex with Ago2 from molecular modeling studies are a valuable guide in the design of siRNA therapeutics. Thus, this comprehensive approach is expected to result in accelerated generation of new siRNA-based therapies against various diseases, now that the first siRNA has obtained approval by the US FDA for treatment of hereditary hATTR amyloidosis.
Journal of medicinal chemistry, Jan 8, 2018
stable phosphate mimic at the 5′-end of the antisense strand, enhances the in vivo potency of siR... more stable phosphate mimic at the 5′-end of the antisense strand, enhances the in vivo potency of siRNA. Here we describe a straightforward synthetic approach to incorporate a nucleotide carrying a vinylphosphonate (VP) moiety at the 5′-end of oligonucleotides under standard solid-phase synthesis and deprotection conditions by utilizing pivaloyloxymethyl (POM) protected VP-nucleoside phosphoramidites. The POM protection enhances scope and scalability of 5′-VP-modified oligonucleotides and, in a broader sense, the synthesis of oligonucleotides modified with phosphonate moieties. Trivalent N-acetylgalactosamineconjugated small interfering RNA (GalNAc-siRNA) comprising (E)-geometrical isomer of VP showed improved RISC loading with robust RNAi-mediated gene silencing in mice compared to the corresponding (Z)-isomer despite similar tissue accumulation. We also obtained structural insights into why bulkier 2′ribosugar substitutions such as 2′-O-[2-(methylamino)-2-oxoethyl] are well tolerated only when combined with 5′-(E)-VP.
Nucleic acids research, Jan 11, 2018
Chemical modification is a prerequisite of oligonucleotide therapeutics for improved metabolic st... more Chemical modification is a prerequisite of oligonucleotide therapeutics for improved metabolic stability, uptake and activity, irrespective of their mode of action, i.e. antisense, RNAi or aptamer. Phosphate moiety and ribose C2'/O2' atoms are the most common sites for modification. Compared to 2'-O-substituents, ribose 4'-C-substituents lie in proximity of both the 3'- and 5'-adjacent phosphates. To investigate potentially beneficial effects on nuclease resistance we combined 2'-F and 2'-OMe with 4'-Cα- and 4'-Cβ-OMe, and 2'-F with 4'-Cα-methyl modification. The α- and β-epimers of 4'-C-OMe-uridine and the α-epimer of 4'-C-Me-uridine monomers were synthesized and incorporated into siRNAs. The 4'α-epimers affect thermal stability only minimally and show increased nuclease stability irrespective of the 2'-substituent (H, F, OMe). The 4'β-epimers are strongly destabilizing, but afford complete resistance against an ex...
Nature communications, Feb 19, 2018
Small interfering RNAs (siRNAs) conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand a... more Small interfering RNAs (siRNAs) conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand are being evaluated in investigational clinical studies for a variety of indications. The typical development candidate selection process includes evaluation of the most active compounds for toxicity in rats at pharmacologically exaggerated doses. The subset of GalNAc-siRNAs that show rat hepatotoxicity is not advanced to clinical development. Potential mechanisms of hepatotoxicity can be associated with the intracellular accumulation of oligonucleotides and their metabolites, RNA interference (RNAi)-mediated hybridization-based off-target effects, and/or perturbation of endogenous RNAi pathways. Here we show that rodent hepatotoxicity observed at supratherapeutic exposures can be largely attributed to RNAi-mediated off-target effects, but not chemical modifications or the perturbation of RNAi pathways. Furthermore, these off-target effects can be mitigated by modulating seed-pairing usin...
Journal of the American Chemical Society, 2017
We designed novel 4′-modified 2′-deoxy-2′-fluorouridine (2′-F U) analogues with the aim to improv... more We designed novel 4′-modified 2′-deoxy-2′-fluorouridine (2′-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4′-C-methoxy (4′-OMe) as the alpha (C4′α) or beta (C4′β) epimers. The C4′α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2′-F U. 1 H NMR analysis and computational investigation of the α-epimer revealed that the 4′-OMe imparts a conformational bias toward the NorthEast sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodified nucleotides, whereas the β-epimer led to significant destabilization. Both 4′-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4′-OMe substituent and the vicinal 5′-and 3′-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4′α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2′-F U.
Journal of the American Chemical Society, Jun 1, 2017
Here we report the investigation of glycol nucleic acid (GNA), an acyclic nucleic acid analog, as... more Here we report the investigation of glycol nucleic acid (GNA), an acyclic nucleic acid analog, as a modification of siRNA duplexes. We evaluated the impact of (S)- or (R)-GNA nucleotide incorporation on RNA duplex structure by determining three individual crystal structures. These structures indicate that the (S)-nucleotide backbone adopts a conformation that has little impact on the overall duplex structure, while the (R)-nucleotide disrupts the phosphate backbone and hydrogen bonding of an adjacent base pair. In addition, the GNA-T nucleobase adopts a rotated conformation in which the 5-methyl group points into the minor groove, rather than the major groove in a normal Watson-Crick base pair. This observation of reverse Watson-Crick base pairing is further supported by thermal melting analysis of GNA-C and GNA-G containing duplexes where it was demonstrated that a higher thermal stability was associated with isoguanine and isocytosine base pairing, respectively, over the canonical...
Nucleic acids research, May 15, 2016
Efficient gene silencing by RNA interference (RNAi) in vivo requires the recognition and binding ... more Efficient gene silencing by RNA interference (RNAi) in vivo requires the recognition and binding of the 5-phosphate of the guide strand of an siRNA by the Argonaute protein. However, for exogenous siRNAs it is limited by the rapid removal of the 5-phosphate of the guide strand by metabolic enzymes. Here, we have determined the crystal structure of human Argonaute-2 in complex with the metabolically stable 5-(E)-vinylphosphonate (5-E-VP) guide RNA at 2.5-Å resolution. The structure demonstrates how the 5 binding site in the Mid domain of human Argonaute-2 is able to adjust the key residues in the 5-nucleotide binding pocket to compensate for the change introduced by the modified nucleotide. This observation also explains improved binding affinity of the 5-E-VP-modified siRNA to human Argonaute-2 in-vitro, as well as the enhanced silencing in the context of the trivalent N-acetylgalactosamine (GalNAc)conjugated siRNA in mice relative to the unmodified siRNA.
ACS chemical biology, Jan 17, 2015
5'-Phosphorylation is a critical step in the cascade of events that leads to loading of small... more 5'-Phosphorylation is a critical step in the cascade of events that leads to loading of small interfering RNAs (siRNAs) into the RNA-induced silencing complex (RISC) to elicit gene silencing. 5'-Phosphorylation of exogenous siRNAs is generally accomplished by a cytosolic Clp1 kinase, and in most cases, the presence of a 5'-monophosphate on synthetic siRNAs is not a prerequisite for activity. Chemically introduced, metabolically stable 5'-phosphate mimics can lead to higher metabolic stability, increased RISC loading, and higher gene silencing activities of chemically modified siRNAs,. In this study, we report the synthesis of 5'-C-malonyl RNA, a 5'-monophosphate bioisostere. A 5'-C-malonyl-modified nucleotide was incorporated at the 5'-terminus of chemically modified RNA oligonucleotides using solid-phase synthesis. In vitro silencing activity, in vitro metabolic stability, and in vitro RISC loading of 5'-C-malonyl siRNA was compared to correspond...
Molecular therapy. Nucleic acids, Jan 3, 2015
The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthe... more The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthesis pathway. Induction of the first enzyme 5-aminolevulinic acid synthase 1 (ALAS1) by triggers such as fasting or drug exposure can lead to accumulation of neurotoxic heme intermediates that cause disease symptoms. We have demonstrated that hepatic ALAS1 silencing using siRNA in a lipid nanoparticle effectively prevents and treats induced attacks in a mouse model of acute intermittent porphyria. Herein, we report the development of ALN-AS1, an investigational GalNAc-conjugated RNAi therapeutic targeting ALAS1. One challenge in advancing ALN-AS1 to patients is the inability to detect liver ALAS1 mRNA in the absence of liver biopsies. We here describe a less invasive circulating extracellular RNA detection assay to monitor RNAi drug activity in serum and urine. A striking correlation in ALAS1 mRNA was observed across liver, serum, and urine in both rodents and nonhuman primates (NHPs) fol...
Nature biotechnology, Jan 20, 2015
A central hurdle in developing small interfering RNAs (siRNAs) as therapeutics is the inefficienc... more A central hurdle in developing small interfering RNAs (siRNAs) as therapeutics is the inefficiency of their delivery across the plasma and endosomal membranes to the cytosol, where they interact with the RNA interference machinery. With the aim of improving endosomal release, a poorly understood and inefficient process, we studied the uptake and cytosolic release of siRNAs, formulated in lipoplexes or lipid nanoparticles, by live-cell imaging and correlated it with knockdown of a target GFP reporter. siRNA release occurred invariably from maturing endosomes within ∼5-15 min of endocytosis. Cytosolic galectins immediately recognized the damaged endosome and targeted it for autophagy. However, inhibiting autophagy did not enhance cytosolic siRNA release. Gene knockdown occurred within a few hours of release and required <2,000 copies of cytosolic siRNAs. The ability to detect cytosolic release of siRNAs and understand how it is regulated will facilitate the development of rational ...
Molecular Therapy - Nucleic Acids, 2012
Leukocytes are central regulators of inflammation and the target cells of therapies for key disea... more Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-(TNF) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.
RNA, 2012
Since the discovery of RNA interference (RNAi), researchers have identified a variety of small in... more Since the discovery of RNA interference (RNAi), researchers have identified a variety of small interfering RNA (siRNA) structures that demonstrate the ability to silence gene expression through the classical RISC-mediated mechanism. One such structure, termed “Dicer-substrate siRNA” (dsiRNA), was proposed to have enhanced potency via RISC-mediated gene silencing, although a comprehensive comparison of canonical siRNAs and dsiRNAs remains to be described. The present study evaluates the in vitro and in vivo activities of siRNAs and dsiRNAs targeting Phosphatase and Tensin Homolog (PTEN) and Factor VII (FVII). More than 250 compounds representing both siRNA and dsiRNA structures were evaluated for silencing efficacy. Lead compounds were assessed for duration of silencing and other key parameters such as cytokine induction. We identified highly active compounds from both canonical siRNAs and 25/27 dsiRNAs. Lead compounds were comparable in potency both in vitro and in vivo as well as d...