Manuel Vázquez - Academia.edu (original) (raw)
Uploads
Papers by Manuel Vázquez
Signal Processing, 2016
Distributed signal processing algorithms have become a hot topic during the past years. One class... more Distributed signal processing algorithms have become a hot topic during the past years. One class of algorithms that have received special attention are particles filters (PFs). However, most distributed PFs involve various heuristic or simplifying approximations and, as a consequence, classical convergence theorems for standard PFs do not hold for their distributed counterparts. In this paper, we analyze a distributed PF based on the non-proportional weightallocation scheme of Bolic et al (2005) and prove rigorously that, under certain stability assumptions, its asymptotic convergence is guaranteed uniformly over time, in such a way that approximation errors can be kept bounded with a fixed computational budget. To illustrate the theoretical findings, we carry out computer simulations for a target tracking problem. The numerical results show that the distributed PF has a negligible performance loss (compared to a centralized filter) for this problem and enable us to empirically validate the key assumptions of the analysis.
Signal Processing, 2016
Distributed signal processing algorithms have become a hot topic during the past years. One class... more Distributed signal processing algorithms have become a hot topic during the past years. One class of algorithms that have received special attention are particles filters (PFs). However, most distributed PFs involve various heuristic or simplifying approximations and, as a consequence, classical convergence theorems for standard PFs do not hold for their distributed counterparts. In this paper, we analyze a distributed PF based on the non-proportional weightallocation scheme of Bolic et al (2005) and prove rigorously that, under certain stability assumptions, its asymptotic convergence is guaranteed uniformly over time, in such a way that approximation errors can be kept bounded with a fixed computational budget. To illustrate the theoretical findings, we carry out computer simulations for a target tracking problem. The numerical results show that the distributed PF has a negligible performance loss (compared to a centralized filter) for this problem and enable us to empirically validate the key assumptions of the analysis.