Maria Ekblom - Academia.edu (original) (raw)
Papers by Maria Ekblom
The purpose of the present study was to investigate the pattern of trunk muscle activation and in... more The purpose of the present study was to investigate the pattern of trunk muscle activation and intra-abdominal pressure (IAP) in a somewhat modified version of the clean and jerk lift. Nine healthy physically active male amateurs performed the exercise with a 30-kg barbell. Muscle activity was registered with electromyography from transversus abdominis (TrA) and obliquus internus (OI) using intramuscular electrodes and from rectus abdominis (RA) and erector spinae (ES) with surface electrodes. IAP was recorded with a nasogastric catheter. Measurements were made in various static positions throughout the lift and in the transitional phases separating them, both during lifting and lowering. The results demonstrated that the innermost abdominal muscle, TrA, showed increased activation levels in the two highest positions, whereas ES was most active, together with the highest IAP, in the lowest position. OI and RA showed generally little activation and no obvious trend throughout the lift. The results strengthen the view of a contributing role of TrA to the upright control of the trunk and indicate that the clean and jerk lift might constitute a whole-body exercise, still targeting the TrA muscle, in late-stage rehabilitation, especially for athletes during return to sports.
This study aimed to investigate conditioning effects from a single 6-s plantar flexion maximal vo... more This study aimed to investigate conditioning effects from a single 6-s plantar flexion maximal voluntary isometric contraction (MVIC) on Achilles tendon stiffness (ATS) and twitch properties of the triceps surae in athletes. Peak twitch (PT), rate of torque development (RTD), rising time (RT₁₀₋₉₀%) and half relaxation time (HRT) were measured from supramaximal twitches evoked in the plantar flexors of 10 highly trained athletes. Twitches were evoked before and at seven occasions during 10 min of recovery after a 6-s MVIC. In a second session, but at identical post-conditioning time points, ATS was measured at 30 and 50% of MVIC (ATS₃₀% and ATS₅₀%) using an ultrasonography-based method. The magnitude and duration of the conditioning MVIC on muscle contractile properties were in accordance with previous literature on post activation potentiation (PAP), i.e., high potentiation immediately after MVIC, with significant PAP for up to 3 min after the MVIC. While PT and RTD were significantly enhanced (by 60.6 ± 19.3 and 90.1 ± 22.5%, respectively) and RT₁₀₋₉₀% and HRT were reduced (by 10.1 ± 7.7 and 18.7 ± 5.6%, respectively) after conditioning, ATS remained unaffected. Previous studies have suggested that changes in stiffness after conditioning may interfere with the enhancements in twitch contractile properties. The present study, however, provided some evidence that twitch enhancements after a standard PAP can be induced without changes in ATS. This result may suggest that athletes can use this protocol to enhance muscle contractile properties without performance deficits due to changes in ATS.
The Journal of Physiology, 2001
Scandinavian Journal of Medicine and Science in Sports, 2006
Neuroscience Letters, 2004
Medicine & Science in Sports & Exercise, 2014
A conditioning maximal voluntary muscle action (MVC) has been shown to induce postactivation pote... more A conditioning maximal voluntary muscle action (MVC) has been shown to induce postactivation potentiation, that is, improved contractile muscle properties, when muscles are contracted isometrically. It is still uncertain how the contractile properties are affected during ongoing muscle length changes. The purpose of this study was to investigate the effects of a 6-s conditioning MVC on twitch properties of the plantarflexors during ongoing muscle length changes. Peak twitch, rate of torque development, and rate of torque relaxation, rising time, and half relaxation time were measured from supramaximal twitches evoked in the plantarflexors of 11 highly trained athletes. Twitches were evoked before a 6-s MVC and subsequently on eight different occasions during a 10-min recovery for five different modes: fast lengthening, slow lengthening, isometric, fast shortening, and slow shortening of the plantarflexors. The magnitude and the duration of effects from the conditioning MVC were significantly different between modes. Peak twitch, rate of torque development, and rate of torque relaxation significantly increased for all modes but more so for twitches evoked during fast and slow shortening as compared with lengthening. Rising time was reduced in the lengthening modes but slightly prolonged in the shortening modes. Half relaxation time was significantly reduced for all modes, except fast lengthening. The findings show that the effects of a conditioning MVC on twitch contractile properties are dependent on direction and velocity of ongoing muscle length changes. This may imply that functional enhancements from a conditioning MVC might be expected to be greatest for concentric muscle actions but are still present in isometric and eccentric parts of a movement.
Medicine & Science in Sports & Exercise, 2011
Neural activation is generally lower during maximal voluntary lengthening compared with shortenin... more Neural activation is generally lower during maximal voluntary lengthening compared with shortening and isometric muscle actions, but the mechanisms underlying these differences are unclear. In maximal voluntary isometric actions, reduced Ia-afferent input induced by prolonged tendon vibration has been shown to impair neural activation and strength. This study aimed to investigate whether reducing Ia-afferent input influences neural activation in maximal voluntary dynamic muscle actions and, if so, whether it affects shortening and lengthening muscle actions differently. Eight women participated in three familiarization sessions and two randomly ordered experiments. In one experiment, 30-min vibration at 100 Hz was applied to the Achilles tendon to decrease Ia-afferent input as measured by the H-reflex. In the control experiment, rest substituted the vibration. Root mean square EMG from plantar and dorsiflexor muscles and plantar flexor strength were measured during maximal voluntary plantar flexor shortening and lengthening actions (20°·s(-1)) before and after vibration and rest, respectively. Soleus H-reflexes and M-waves were elicited before each set of strength tests. The vibration caused a decrease in H-reflex amplitude by, on the average, 33%, but root mean square EMG and plantar flexor strength remained largely unaffected in both action types. The findings suggest that Ia-afferent input may not substantially contribute to maximal voluntary dynamic muscle strength of the plantar flexor muscles, as tested here, and thus, the results do not support the notion that Ia-afferent excitation would contribute differently to neural activation in maximal voluntary lengthening and shortening muscle actions.
Journal of Applied Physiology, 2003
This study aimed to investigate central and peripheral contributions to fatigue during repeated m... more This study aimed to investigate central and peripheral contributions to fatigue during repeated maximal voluntary isometric plantar flexions (MVCs). Changes in joint torque, level of activation (LOA), resting twitch amplitude (RT), electromyographic signals (EMG), and presynaptic inhibition of Ia afferents were investigated during 9 bouts of 10 MVCs. MVCs lasted for 2 s and were separated by 1 s. The interval between bouts was 10 s. Electrical stimulation was applied to the tibial nerve; at rest to evoke RTs, M waves, and two (1.5-s interval) H reflexes; with the soleus EMG at 30% of that during MVC to evoke M waves and two H reflexes; and during MVCs to measure LOA. Over the nine bouts, LOA decreased by 12.6% and RT by 16.2%. EMG root mean square during MVCs remained unchanged for the soleus and tibialis anterior muscles, but it decreased for medial gastrocnemius. Peripheral fatigue (decrease in RT) was positively correlated to LOA, whereas central fatigue (decrease in LOA) was not. Depression of both H reflexes suggests that presynaptic inhibition after the first bout was partly induced by homosynaptic postactivation depression of the Ia terminal. The H-reflex-to-M-wave ratio increased with fatigue in both passive and active states, with no change in the ratio of the second H reflex to the first, thereby indicating a decrease of presynaptic inhibition during fatigue. The results indicate that both central and peripheral mechanisms contributed to the fatigue observed during repeated MVCs and that the development of peripheral fatigue was influenced by the level of voluntary activation and initial plantar flexor torque.
European Journal of Applied Physiology, 2012
The purpose of the present study was to investigate the pattern of trunk muscle activation and in... more The purpose of the present study was to investigate the pattern of trunk muscle activation and intra-abdominal pressure (IAP) in a somewhat modified version of the clean and jerk lift. Nine healthy physically active male amateurs performed the exercise with a 30-kg barbell. Muscle activity was registered with electromyography from transversus abdominis (TrA) and obliquus internus (OI) using intramuscular electrodes and from rectus abdominis (RA) and erector spinae (ES) with surface electrodes. IAP was recorded with a nasogastric catheter. Measurements were made in various static positions throughout the lift and in the transitional phases separating them, both during lifting and lowering. The results demonstrated that the innermost abdominal muscle, TrA, showed increased activation levels in the two highest positions, whereas ES was most active, together with the highest IAP, in the lowest position. OI and RA showed generally little activation and no obvious trend throughout the lift. The results strengthen the view of a contributing role of TrA to the upright control of the trunk and indicate that the clean and jerk lift might constitute a whole-body exercise, still targeting the TrA muscle, in late-stage rehabilitation, especially for athletes during return to sports.
This study aimed to investigate conditioning effects from a single 6-s plantar flexion maximal vo... more This study aimed to investigate conditioning effects from a single 6-s plantar flexion maximal voluntary isometric contraction (MVIC) on Achilles tendon stiffness (ATS) and twitch properties of the triceps surae in athletes. Peak twitch (PT), rate of torque development (RTD), rising time (RT₁₀₋₉₀%) and half relaxation time (HRT) were measured from supramaximal twitches evoked in the plantar flexors of 10 highly trained athletes. Twitches were evoked before and at seven occasions during 10 min of recovery after a 6-s MVIC. In a second session, but at identical post-conditioning time points, ATS was measured at 30 and 50% of MVIC (ATS₃₀% and ATS₅₀%) using an ultrasonography-based method. The magnitude and duration of the conditioning MVIC on muscle contractile properties were in accordance with previous literature on post activation potentiation (PAP), i.e., high potentiation immediately after MVIC, with significant PAP for up to 3 min after the MVIC. While PT and RTD were significantly enhanced (by 60.6 ± 19.3 and 90.1 ± 22.5%, respectively) and RT₁₀₋₉₀% and HRT were reduced (by 10.1 ± 7.7 and 18.7 ± 5.6%, respectively) after conditioning, ATS remained unaffected. Previous studies have suggested that changes in stiffness after conditioning may interfere with the enhancements in twitch contractile properties. The present study, however, provided some evidence that twitch enhancements after a standard PAP can be induced without changes in ATS. This result may suggest that athletes can use this protocol to enhance muscle contractile properties without performance deficits due to changes in ATS.
The Journal of Physiology, 2001
Scandinavian Journal of Medicine and Science in Sports, 2006
Neuroscience Letters, 2004
Medicine & Science in Sports & Exercise, 2014
A conditioning maximal voluntary muscle action (MVC) has been shown to induce postactivation pote... more A conditioning maximal voluntary muscle action (MVC) has been shown to induce postactivation potentiation, that is, improved contractile muscle properties, when muscles are contracted isometrically. It is still uncertain how the contractile properties are affected during ongoing muscle length changes. The purpose of this study was to investigate the effects of a 6-s conditioning MVC on twitch properties of the plantarflexors during ongoing muscle length changes. Peak twitch, rate of torque development, and rate of torque relaxation, rising time, and half relaxation time were measured from supramaximal twitches evoked in the plantarflexors of 11 highly trained athletes. Twitches were evoked before a 6-s MVC and subsequently on eight different occasions during a 10-min recovery for five different modes: fast lengthening, slow lengthening, isometric, fast shortening, and slow shortening of the plantarflexors. The magnitude and the duration of effects from the conditioning MVC were significantly different between modes. Peak twitch, rate of torque development, and rate of torque relaxation significantly increased for all modes but more so for twitches evoked during fast and slow shortening as compared with lengthening. Rising time was reduced in the lengthening modes but slightly prolonged in the shortening modes. Half relaxation time was significantly reduced for all modes, except fast lengthening. The findings show that the effects of a conditioning MVC on twitch contractile properties are dependent on direction and velocity of ongoing muscle length changes. This may imply that functional enhancements from a conditioning MVC might be expected to be greatest for concentric muscle actions but are still present in isometric and eccentric parts of a movement.
Medicine & Science in Sports & Exercise, 2011
Neural activation is generally lower during maximal voluntary lengthening compared with shortenin... more Neural activation is generally lower during maximal voluntary lengthening compared with shortening and isometric muscle actions, but the mechanisms underlying these differences are unclear. In maximal voluntary isometric actions, reduced Ia-afferent input induced by prolonged tendon vibration has been shown to impair neural activation and strength. This study aimed to investigate whether reducing Ia-afferent input influences neural activation in maximal voluntary dynamic muscle actions and, if so, whether it affects shortening and lengthening muscle actions differently. Eight women participated in three familiarization sessions and two randomly ordered experiments. In one experiment, 30-min vibration at 100 Hz was applied to the Achilles tendon to decrease Ia-afferent input as measured by the H-reflex. In the control experiment, rest substituted the vibration. Root mean square EMG from plantar and dorsiflexor muscles and plantar flexor strength were measured during maximal voluntary plantar flexor shortening and lengthening actions (20°·s(-1)) before and after vibration and rest, respectively. Soleus H-reflexes and M-waves were elicited before each set of strength tests. The vibration caused a decrease in H-reflex amplitude by, on the average, 33%, but root mean square EMG and plantar flexor strength remained largely unaffected in both action types. The findings suggest that Ia-afferent input may not substantially contribute to maximal voluntary dynamic muscle strength of the plantar flexor muscles, as tested here, and thus, the results do not support the notion that Ia-afferent excitation would contribute differently to neural activation in maximal voluntary lengthening and shortening muscle actions.
Journal of Applied Physiology, 2003
This study aimed to investigate central and peripheral contributions to fatigue during repeated m... more This study aimed to investigate central and peripheral contributions to fatigue during repeated maximal voluntary isometric plantar flexions (MVCs). Changes in joint torque, level of activation (LOA), resting twitch amplitude (RT), electromyographic signals (EMG), and presynaptic inhibition of Ia afferents were investigated during 9 bouts of 10 MVCs. MVCs lasted for 2 s and were separated by 1 s. The interval between bouts was 10 s. Electrical stimulation was applied to the tibial nerve; at rest to evoke RTs, M waves, and two (1.5-s interval) H reflexes; with the soleus EMG at 30% of that during MVC to evoke M waves and two H reflexes; and during MVCs to measure LOA. Over the nine bouts, LOA decreased by 12.6% and RT by 16.2%. EMG root mean square during MVCs remained unchanged for the soleus and tibialis anterior muscles, but it decreased for medial gastrocnemius. Peripheral fatigue (decrease in RT) was positively correlated to LOA, whereas central fatigue (decrease in LOA) was not. Depression of both H reflexes suggests that presynaptic inhibition after the first bout was partly induced by homosynaptic postactivation depression of the Ia terminal. The H-reflex-to-M-wave ratio increased with fatigue in both passive and active states, with no change in the ratio of the second H reflex to the first, thereby indicating a decrease of presynaptic inhibition during fatigue. The results indicate that both central and peripheral mechanisms contributed to the fatigue observed during repeated MVCs and that the development of peripheral fatigue was influenced by the level of voluntary activation and initial plantar flexor torque.
European Journal of Applied Physiology, 2012