Marina Montali - Academia.edu (original) (raw)

Papers by Marina Montali

Research paper thumbnail of Additional file 1: of Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, which is lost after mesengenic differentiation

Is a table presenting primer sequences. (DOCX 24 kb)

Research paper thumbnail of ED-B-Containing Isoform of Fibronectin in Tumor Microenvironment of Thymomas: A Target for a Theragnostic Approach

Cancers

Aim: to exploit tissue-specific interactions among thymic epithelial tumor (TETs) cells and extra... more Aim: to exploit tissue-specific interactions among thymic epithelial tumor (TETs) cells and extra-domain B fibronectin (ED-B FN). Material and methods: The stromal pattern of ED-B FN expression was investigated through tumor specimen collection and molecular profiling in 11 patients with recurrent TETs enrolled in prospective theragnostic phase I/II trials with Radretumab, an ED-B FN specific recombinant human antibody. Radretumab radioimmunotherapy (R-RIT) was offered to patients who exhibited the target expression. Experiments included immunochemical analysis (ICH), cell cultures, immunophenotypic analysis, Western blot, slot-blot assay, and quantitative RT-PCR of two primary thymoma cultures we obtained from patients’ samples and in the Ty82 cell line. Results: The in vivo scintigraphic demonstration of ED-B FN expression resulted in R-RIT eligibility in 8/11 patients, of which seven were treated. The best observed response was disease stabilization (n = 5/7) with a duration of 4...

Research paper thumbnail of Mesangiogenic Progenitor Cells Are Tissue Specific and Cannot Be Isolated From Adipose Tissue or Umbilical Cord Blood

Frontiers in Cell and Developmental Biology, 2021

Mesangiogenic progenitor cells (MPCs) have been isolated from human bone marrow (BM) mononuclear ... more Mesangiogenic progenitor cells (MPCs) have been isolated from human bone marrow (BM) mononuclear cells. They attracted particular attention for the ability to differentiate into exponentially growing mesenchymal stromal cells while retaining endothelial differentiative potential. MPC power to couple mesengenesis and angiogenesis highlights their tissue regenerative potential and clinical value, with particular reference to musculoskeletal tissues regeneration. BM and adipose tissue represent the most promising adult multipotent cell sources for bone and cartilage repair, although discussion is still open on their respective profitability. Culture determinants, as well as tissues of origin, appeared to strongly affect the regenerative potential of cell preparations, making reliable methods for cell isolation and growth a prerequisite to obtain cell-based medicinal products. Our group had established a definite consistent protocol for MPC culture, and here, we present data showing MPC...

Research paper thumbnail of Additional file 4: of Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, which is lost after mesengenic differentiation

Is a figure showing representative confocal images of MPCs and HUVECs applied on CAM. Immunofluor... more Is a figure showing representative confocal images of MPCs and HUVECs applied on CAM. Immunofluorescence staining for human HLA-ABC antigen (green) revealed human-derived cells involved in tissue remodeling, both with MPC and HUVEC on-plants. Nonetheless, foci of new vessel formation (arrows) positive for hCD34 (red) were detected only after application of MPC constructs on chicken CAM. Nuclei shown in blue, while chicken-derived perfused microvessels were revealed by the presence of nucleated autofluorescent erythrocytes (pale orange in the "merge" panels). Scale bar = 50 μm. (TIF 3238 kb)

Research paper thumbnail of Studies in search for selective ligands for GABAA/BzR receptor subtypes: synthesis and biological evaluation of 4'-modified N-(benzyl)indol-3-ylglyoxylamides

Research paper thumbnail of High NESTIN Expression Marks the Endosteal Capillary Network in Human Bone Marrow

Frontiers in Cell and Developmental Biology, 2020

Hematopoiesis is hosted, supported and regulated by a special bone marrow (BM) microenvironment k... more Hematopoiesis is hosted, supported and regulated by a special bone marrow (BM) microenvironment known as “niche.” BM niches have been classified based on micro-anatomic distance from the bone surface into “endosteal” and “central” niches. Whilst different blood vessels have been found in both BM niches in mice, our knowledge of the human BM architecture is much more limited. Here, we have used a combination of markers including NESTIN, CD146, and αSMA labeling different blood vessels in benign human BM. Applying immunohistochemical/immunofluorescence techniques on BM trephines and performing image analysis on almost 300 microphotographs, we detected high NESTIN expression in BM endothelial cells (BMECs) of small arteries (A) and endosteal arterioles (EA), and also in very small vessels we named NESTIN+ capillary-like tubes (NCLTs), not surrounded by sub-endothelial perivascular cells that occasionally reported low levels of NESTIN expression. Statistically, NCLTs were detected withi...

Research paper thumbnail of Mesangiogenic progenitor cells are forced toward the angiogenic fate, in multiple myeloma

Oncotarget, 2019

Multiple myeloma (MM) progresses mainly in the bone marrow where the involvement of a specific mi... more Multiple myeloma (MM) progresses mainly in the bone marrow where the involvement of a specific microenvironment plays a critical role in maintaining plasma cell growth, spread, and survival. In active disease, the switch from a pre-vascular/ non-active phase to a vascular phase is coupled with the impairment of bone turnover. Previously, we have isolated Mesangiogenic Progenitor Cells (MPCs), a bone marrow population that showed mesengenic and angiogenic potential, both in vitro and in vivo. MPC differentiation into musculoskeletal tissue and their ability of sprouting angiogenesis are mutually exclusive, suggesting a role in the imbalancing of the microenvironment in multiple myeloma. MPCs from 32 bone marrow samples of multiple myeloma and 23 nonhematological patients were compared in terms of frequency, phenotype, mesengenic/ angiogenic potential, and gene expression profile. Defective osteogenesis was recorded for MM-derived MPCs that showed longer angiogenic sprouting distances respect to non-hematological MPCs, retaining this capability after mesengenic induction. This altered MPCs differentiation potential was not detected in asymptomatic myelomatous disease. These in vitro experiments are suggestive of a forced angiogenic fate in MPCs isolated from MM patients, which also showed increased sprouting activity. Taking together our results suggest a possible role of these cells in the "angiogenic switch" in the MM micro-environment. between malignant plasma cells (PCs) and the bone marrow (BM) niche sustain and promote tumor growth [2]. Endothelial cells, stromal cells, osteoblasts, osteoclasts, and immune cells together with the extracellular matrix are involved in the process. Cross-talks between neoplastic www.oncotarget.com

Research paper thumbnail of The Polycomb BMI1 Protein Is Co-expressed With CD26+ in Leukemic Stem Cells of Chronic Myeloid Leukemia

Frontiers in Oncology, 2018

Research paper thumbnail of Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, which is lost after mesengenic differentiation

Stem cell research & therapy, May 2, 2017

Mesangiogenic progenitor cells (MPCs) have shown the ability to differentiate in-vitro toward mes... more Mesangiogenic progenitor cells (MPCs) have shown the ability to differentiate in-vitro toward mesenchymal stromal cells (MSCs) as well as angiogenic potential. MPCs have so far been described in detail as progenitors of the mesodermal lineage and appear to be of great significance in tissue regeneration and in hemopoietic niche regulation. On the contrary, information regarding the MPC angiogenic process is still incomplete and requires further clarification. In particular, genuine MPC angiogenic potential should be confirmed in-vivo. In the present article, markers and functions associated with angiogenic cells have been dissected. MPCs freshly isolated from human bone marrow have been induced to differentiate into exponentially growing MSCs (P2-MSCs). Cells have been characterized and angiogenesis-related gene expression was evaluated before and after mesengenic differentiation. Moreover, angiogenic potential has been tested by in-vitro and in-vivo functional assays. MPCs showed a...

Research paper thumbnail of Nanotopography Induced Human Bone Marrow Mesangiogenic Progenitor Cells (MPCs) to Mesenchymal Stromal Cells (MSCs) Transition

Frontiers in Cell and Developmental Biology, 2016

Mesangiogenic progenitor cells (MPCs) are a very peculiar population of cells present in the huma... more Mesangiogenic progenitor cells (MPCs) are a very peculiar population of cells present in the human adult bone marrow, only recently discovered and characterized. Owing to their differentiation potential, MPCs can be considered progenitors for mesenchymal stromal cells (MSCs), and for this reason they potentially represent a promising cell population to apply for skeletal tissue regeneration applications. Here, we evaluate the effects of surface nanotopography on MPCs, considering the possibility that this specific physical stimulus alone can trigger MPC differentiation toward the mesenchymal lineage. In particular, we exploit nanogratings to deliver a mechanical, directional stimulus by contact interaction to promote cell morphological polarization and stretching. Following this interaction, we study the MPC-MSC transition by i. analyzing the change in cell morphotype by immunostaining of the key cell-adhesion structures and confocal fluorescence microscopy, and ii. quantifying the expression of cell-phenotype characterizing markers by flow cytometry. We demonstrate that the MPC mesengenic differentiation can be induced by the solely interaction with the NGs, in absence of any other external, chemical stimulus. This aspect is of particular interest in the case of multipotent progenitors as MPCs that, retaining both mesengenic and angiogenic potential, possess a high clinical appeal.

Research paper thumbnail of Growth Factor Content in Human Sera Affects the Isolation of Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow

Frontiers in Cell and Developmental Biology, 2016

Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated i... more Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated in vitro under selective culture conditions and shown to retain both mesengenic and angiogenic potential. MPCs also co-isolated with multipotent stromal cells (MSCs) when bone marrow primary cultures were set up for clinical applications, using human serum (HS) in place of fetal bovine serum (FBS). MPC culture purity (over 95%) is strictly dependent on HS supplementation with significant batch-to-batch variability. In the present paper we screened different sources of commercially available pooled human AB type serum (PhABS) for their ability to promote MPC production under selective culture conditions. As the majority of "contaminating" cells in MPC cultures were represented by MSC-like cells, we hypothesized a role by differentiating agents present in the sera. Therefore, we tested a number of growth factors (hGF) and found that higher concentrations of FGF-2, EGF, PDGF-AB, and VEGF-A as well as lower concentration of IGF-1 give sub-optimal MPC recovery. Gene expression analysis of hGF receptors was also carried out both in MSCs and MPCs, suggesting that FGF-2, EGF, and PDGF-AB could act promoting MSC proliferation, while VEGF-A contribute to MSC-like cell contamination, triggering MPC differentiation. Here we demonstrated that managing hGF contents, together with applying specific receptors inhibitors (Erlotinib-HCl and Nintedanib), could significantly mitigate the batch-to-batch variability related to serum supplementation. These data represent a fundamental milestone in view of manufacturing MPC-based medicinal products.

Research paper thumbnail of Human mesenchymal stromal cell-enhanced osteogenic differentiation by contact interaction with polyethylene terephthalate nanogratings

Biomedical Materials, 2016

Among the very large number of polymeric materials that have been proposed in the field of orthop... more Among the very large number of polymeric materials that have been proposed in the field of orthopedics, polyethylene terephthalate (PET) is one of the most attractive thanks to its flexibility, thermal resistance, mechanical strength and durability. Several studies have been proposed that interface nano- or micro-structured surfaces with mesenchymal stromal cells (MSCs), demonstrating the potential of this technology for promoting osteogenesis. All these studies were carried out on biomaterials other than PET, which remains almost uninvestigated in terms of cell shaping, alignment and differentiation. Here, we study the effect of PET 350-depth nanogratings (NGs) with a ridge and lateral groove size of 500 nm (T1) or 1 μm (T2), on bone marrow-derived human MSC (hMSC) differentiation in relation to the osteogenic fate. We demonstrate that these substrates, especially T2, can promote the osteogenic phenotype more efficiently than standard flat surfaces and that this effect is more marked if cells are cultured in osteogenic medium than in basal medium. Finally, we show that the shape and disposition of calcium hydroxyapatite granules on the different substrates was influenced by the substrate symmetry, being more elongated and spatially organized on NGs than on flat surfaces.

Research paper thumbnail of Selective Culture of Mesodermal Progenitor Cells

Stem Cells and Development, 2009

We have recently identifi ed mesodermal progenitor cells (MPCs) isolated from adult human bone ma... more We have recently identifi ed mesodermal progenitor cells (MPCs) isolated from adult human bone marrow. These cells show unusual phenotypes, having putative embryonic markers and aldehyde dehydrogenase (ALDH) activity. Interestingly, these resting cells, which have been selected by culturing them in the presence of adult human serum, can easily be induced to differentiate into mature mesenchymal stromal cells (MSCs) after substituting the adult human serum for fetal bovine serum (FBS) or human cord serum. MPC-derived MSCs are, in turn, able to differentiate toward osteoblasts, chondrocytes, and adipocytes. Furthermore, MPCs are able to differentiate into endothelial cells. MPCs have been proven to be strongly adherent to plastic culture bottles and to be trypsin-resistant. In the present article, we show a simple and inexpensive method to isolate highly selected mesodermal progenitors from bone marrow or cord blood. The optimization of standard culture conditions (using commercial human AB sera and appropriate concentrations for cell seeding in plastics) allows a pure population of MPCs to be obtained even after a short culture period. We believe that this simple, repeatable, and standardized method will facilitate studies on MPCs.

Research paper thumbnail of Specific Integrin Expression Is Associated with Podosome-Like Structures on Mesodermal Progenitor Cells

Stem Cells and Development, 2013

Mesenchymal stromal cells (MSCs) are a heterogeneous cell population capable of differentiating t... more Mesenchymal stromal cells (MSCs) are a heterogeneous cell population capable of differentiating toward several cell lines in vitro and, possibly, in vivo. Within cultured MSCs, we identified and purified a precursor cell population [mesodermal progenitor cells (MPCs)] retaining robust proliferation potential and ability to differentiate into endothelial or mesenchymal cells. MPC-derived MSCs retain the ability to further differentiate into osteoblasts, cartilage, or fat cells. Here we further characterized MPCs and MSCs by evaluating expression of integrins and adhesion molecules showing their ability to assemble the molecular machinery involved in endothelium adhesion. MPCs were shown to interact with activated and nonactivated endothelium, whereas MSCs exhibited activation of focal adhesion complexes, higher cell motility, and reduced or absent adhesiveness onto endothelial cells, suggesting a matrix remodeling vocation. We also reported a consistent expression of CXCR4 on the MPC cell surface, suggesting that the different phenotypic behavior could be related to specific functions of the cell in each differentiation stage.

Research paper thumbnail of Mesodermal progenitor cells (MPCs) differentiate into mesenchymal stromal cells (MSCs) by activation of Wnt5/calmodulin signalling pathway

PloS one, 2011

Mesenchymal Stromal Cells (MSCs) remain poorly characterized because of the absence of manifest p... more Mesenchymal Stromal Cells (MSCs) remain poorly characterized because of the absence of manifest physical, phenotypic, and functional properties in cultured cell populations. Despite considerable research on MSCs and their clinical application, the biology of these cells is not fully clarified and data on signalling activation during mesenchymal differentiation and proliferation are controversial. The role of Wnt pathways is still debated, partly due to culture heterogeneity and methodological inconsistencies. Recently, we described a new bone marrow cell population isolated from MSC cultures that we named Mesodermal Progenitor Cells (MPCs) for their mesenchymal and endothelial differentiation potential. An optimized culture method allowed the isolation from human adult bone marrow of a highly pure population of MPCs (more than 97%), that showed the distinctive SSEA-4+CD105+CD90(neg) phenotype and not expressing MSCA-1 antigen. Under these selective culture conditions the percentage ...

Research paper thumbnail of Constitutive Expression of Pluripotency-Associated Genes in Mesodermal Progenitor Cells (MPCs)

PLoS ONE, 2010

Background: We recently characterized a progenitor of mesodermal lineage (MPCs) from the human bo... more Background: We recently characterized a progenitor of mesodermal lineage (MPCs) from the human bone marrow of adults or umbilical cord blood. These cells are progenitors able to differentiate toward mesenchymal, endothelial and cardiomyogenic lineages. Here we present an extensive molecular characterization of MPCs, from bone marrow samples, including 39 genes involved in stem cell machinery, differentiation and cell cycle regulation. Methodology/Principal Findings: MPCs are cytofluorimetrically characterized and quantitative RT-PCR was performed to evaluate the gene expression profile, comparing it with MSCs and hESCs lines. Immunofluorescence and dot-blot analysis confirm qRT-PCR data. MPCs exhibit an increased expression of OCT4, NANOG, SALL4, FBX15, SPP1 and to a lesser extent c-MYC and KLF4, but lack LIN28 and SOX2. MPCs highly express SOX15. Conclusions/Significance: MPCs express many pluripotency-associated genes and show a peculiar Oct-4 molecular circuit. Understanding this unique molecular mechanism could lead to identifying MPCs as feasible, long telomeres, target cells for reprogramming with no up-regulation of the p53 pathway. Furthermore MPCs are easily and inexpensively harvested from human bone marrow.

Research paper thumbnail of Identification and Purification of Mesodermal Progenitor Cells From Human Adult Bone Marrow

Stem Cells and Development, 2009

Bone marrow-derived mesodermal stem cells may differentiate toward several lines and are easily c... more Bone marrow-derived mesodermal stem cells may differentiate toward several lines and are easily cultured in vitro. Some putative progenitors of these cells have been described in both humans and mice. Here, we describe a new mesodermal progenitor population [mesodermal progenitors cells (MPCs)] able to differentiate into mesenchymal cells upon appropriate culture conditions. When cultured in presence of autologous serum, these cells are strongly adherent to plastic, resistant to trypsin detachment, and resting. Mesodermal progenitor cells may be pulsed to proliferate and differentiate by substituting autologous serum for human cord blood serum or fetal calf serum. By these methods cells proliferate and differentiate toward mesenchymal cells and thus may further differentiate into osteoblats, chondrocytes, or adipocytes. Moreover MPCs are capable to differentiate in endothelial cells (ECs) showing characteristics similar to microvessel endothelium cells. Mesodermal progenitors cells have a defi ned phenotype and carry embryonic markers not present in mesenchymal cells. Moreover MPCs strongly express aldehyde dehydrogenase activity, usually present in hematopoietic precursors but absent in mesenchymal cells. When these progenitors are pulsed to differentiate, they lose these markers and acquire the mesenchymal ones. Interestingly, mesenchymal cells may not be induced to back differentiate into MPCs. Our results demonstrate the adult serum role in maintaining pluripotent mesodermal precursors and allow isolation of these cells. After purifi cation, MPCs may be pulsed to proliferate in a very large scale and then induced to differentiate, thus possibly allowing their use in regenerative medicine.

Research paper thumbnail of Isolating Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow

Journal of Visualized Experiments, 2016

In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (M... more In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (MSCs) for clinical applications, we identified a novel cell population specifically selected for growth in human serum supplemented medium. These cells are characterized by morphological, phenotypic, and molecular features distinct from MSCs and we named them Mesodermal Progenitor Cells (MPCs). MPCs are round, with a thick highly refringent core region; they show strong, trypsin resistant adherence to plastic. Failure to expand MPCs directly revealed that they are slow in cycling. This is as also suggested by Ki-67 negativity. On the other hand, culturing MPCs in standard medium designed for MSC expansion, gave rise to a population of exponentially growing MSC-like cells. Besides showing mesenchymal differentiation capacity MPCs retained angiogenic potential, confirming their multiple lineage progenitor nature. Here we describe an optimized highly reproducible protocol to isolate and characterize hBM-MPCs by flow cytometry (CD73, CD90, CD31, and CD45), nestin expression, and F-actin organization. Protocols for mesengenic and angiogenic differentiation of MPCs are also provided. Here we also suggest a more appropriate nomenclature for these cells, which has been renamed as "Mesangiogenic Progenitor Cells".

Research paper thumbnail of Growth Factor Content in Human Sera Affects the Isolation of Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow

Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated i... more Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated in vitro under selective culture conditions and shown to retain both mesengenic and angiogenic potential. MPCs also co-isolated with multipotent stromal cells (MSCs) when bone marrow primary cultures were set up for clinical applications, using human serum (HS) in place of fetal bovine serum (FBS). MPC culture purity (over 95%) is strictly dependent on HS supplementation with significant batch-to-batch variability. In the present paper we screened different sources of commercially available pooled human AB type serum (PhABS) for their ability to promote MPC production under selective culture conditions. As the majority of " contaminating " cells in MPC cultures were represented by MSC-like cells, we hypothesized a role by differentiating agents present in the sera. Therefore, we tested a number of growth factors (hGF) and found that higher concentrations of FGF-2, EGF, PDGF-AB, and VEGF-A as well as lower concentration of IGF-1 give sub-optimal MPC recovery. Gene expression analysis of hGF receptors was also carried out both in MSCs and MPCs, suggesting that FGF-2, EGF, and PDGF-AB could act promoting MSC proliferation, while VEGF-A contribute to MSC-like cell contamination, triggering MPC differentiation. Here we demonstrated that managing hGF contents, together with applying specific receptors inhibitors (Erlotinib-HCl and Nintedanib), could significantly mitigate the batch-to-batch variability related to serum supplementation. These data represent a fundamental milestone in view of manufacturing MPC-based medicinal products.

Research paper thumbnail of Isolating Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow

In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (M... more In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (MSCs) for clinical applications, we identified a novel cell population specifically selected for growth in human serum supplemented medium. These cells are characterized by morphological, phenotypic, and molecular features distinct from MSCs and we named them Mesodermal Progenitor Cells (MPCs). MPCs are round, with a thick highly refringent core region; they show strong, trypsin resistant adherence to plastic. Failure to expand MPCs directly revealed that they are slow in cycling. This is as also suggested by Ki-67 negativity. On the other hand, culturing MPCs in standard medium designed for MSC expansion, gave rise to a population of exponentially growing MSC-like cells. Besides showing mesenchymal differentiation capacity MPCs retained angiogenic potential, confirming their multiple lineage progenitor nature. Here we describe an optimized highly reproducible protocol to isolate and characterize hBM-MPCs by flow cytometry (CD73, CD90, CD31, and CD45), nestin expression, and F-actin organization. Protocols for mesengenic and angiogenic differentiation of MPCs are also provided. Here we also suggest a more appropriate nomenclature for these cells, which has been renamed as "Mesangiogenic Progenitor Cells". Video Link The video component of this article can be found at http://www.jove.com/video/54225/

Research paper thumbnail of Additional file 1: of Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, which is lost after mesengenic differentiation

Is a table presenting primer sequences. (DOCX 24 kb)

Research paper thumbnail of ED-B-Containing Isoform of Fibronectin in Tumor Microenvironment of Thymomas: A Target for a Theragnostic Approach

Cancers

Aim: to exploit tissue-specific interactions among thymic epithelial tumor (TETs) cells and extra... more Aim: to exploit tissue-specific interactions among thymic epithelial tumor (TETs) cells and extra-domain B fibronectin (ED-B FN). Material and methods: The stromal pattern of ED-B FN expression was investigated through tumor specimen collection and molecular profiling in 11 patients with recurrent TETs enrolled in prospective theragnostic phase I/II trials with Radretumab, an ED-B FN specific recombinant human antibody. Radretumab radioimmunotherapy (R-RIT) was offered to patients who exhibited the target expression. Experiments included immunochemical analysis (ICH), cell cultures, immunophenotypic analysis, Western blot, slot-blot assay, and quantitative RT-PCR of two primary thymoma cultures we obtained from patients’ samples and in the Ty82 cell line. Results: The in vivo scintigraphic demonstration of ED-B FN expression resulted in R-RIT eligibility in 8/11 patients, of which seven were treated. The best observed response was disease stabilization (n = 5/7) with a duration of 4...

Research paper thumbnail of Mesangiogenic Progenitor Cells Are Tissue Specific and Cannot Be Isolated From Adipose Tissue or Umbilical Cord Blood

Frontiers in Cell and Developmental Biology, 2021

Mesangiogenic progenitor cells (MPCs) have been isolated from human bone marrow (BM) mononuclear ... more Mesangiogenic progenitor cells (MPCs) have been isolated from human bone marrow (BM) mononuclear cells. They attracted particular attention for the ability to differentiate into exponentially growing mesenchymal stromal cells while retaining endothelial differentiative potential. MPC power to couple mesengenesis and angiogenesis highlights their tissue regenerative potential and clinical value, with particular reference to musculoskeletal tissues regeneration. BM and adipose tissue represent the most promising adult multipotent cell sources for bone and cartilage repair, although discussion is still open on their respective profitability. Culture determinants, as well as tissues of origin, appeared to strongly affect the regenerative potential of cell preparations, making reliable methods for cell isolation and growth a prerequisite to obtain cell-based medicinal products. Our group had established a definite consistent protocol for MPC culture, and here, we present data showing MPC...

Research paper thumbnail of Additional file 4: of Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, which is lost after mesengenic differentiation

Is a figure showing representative confocal images of MPCs and HUVECs applied on CAM. Immunofluor... more Is a figure showing representative confocal images of MPCs and HUVECs applied on CAM. Immunofluorescence staining for human HLA-ABC antigen (green) revealed human-derived cells involved in tissue remodeling, both with MPC and HUVEC on-plants. Nonetheless, foci of new vessel formation (arrows) positive for hCD34 (red) were detected only after application of MPC constructs on chicken CAM. Nuclei shown in blue, while chicken-derived perfused microvessels were revealed by the presence of nucleated autofluorescent erythrocytes (pale orange in the "merge" panels). Scale bar = 50 μm. (TIF 3238 kb)

Research paper thumbnail of Studies in search for selective ligands for GABAA/BzR receptor subtypes: synthesis and biological evaluation of 4'-modified N-(benzyl)indol-3-ylglyoxylamides

Research paper thumbnail of High NESTIN Expression Marks the Endosteal Capillary Network in Human Bone Marrow

Frontiers in Cell and Developmental Biology, 2020

Hematopoiesis is hosted, supported and regulated by a special bone marrow (BM) microenvironment k... more Hematopoiesis is hosted, supported and regulated by a special bone marrow (BM) microenvironment known as “niche.” BM niches have been classified based on micro-anatomic distance from the bone surface into “endosteal” and “central” niches. Whilst different blood vessels have been found in both BM niches in mice, our knowledge of the human BM architecture is much more limited. Here, we have used a combination of markers including NESTIN, CD146, and αSMA labeling different blood vessels in benign human BM. Applying immunohistochemical/immunofluorescence techniques on BM trephines and performing image analysis on almost 300 microphotographs, we detected high NESTIN expression in BM endothelial cells (BMECs) of small arteries (A) and endosteal arterioles (EA), and also in very small vessels we named NESTIN+ capillary-like tubes (NCLTs), not surrounded by sub-endothelial perivascular cells that occasionally reported low levels of NESTIN expression. Statistically, NCLTs were detected withi...

Research paper thumbnail of Mesangiogenic progenitor cells are forced toward the angiogenic fate, in multiple myeloma

Oncotarget, 2019

Multiple myeloma (MM) progresses mainly in the bone marrow where the involvement of a specific mi... more Multiple myeloma (MM) progresses mainly in the bone marrow where the involvement of a specific microenvironment plays a critical role in maintaining plasma cell growth, spread, and survival. In active disease, the switch from a pre-vascular/ non-active phase to a vascular phase is coupled with the impairment of bone turnover. Previously, we have isolated Mesangiogenic Progenitor Cells (MPCs), a bone marrow population that showed mesengenic and angiogenic potential, both in vitro and in vivo. MPC differentiation into musculoskeletal tissue and their ability of sprouting angiogenesis are mutually exclusive, suggesting a role in the imbalancing of the microenvironment in multiple myeloma. MPCs from 32 bone marrow samples of multiple myeloma and 23 nonhematological patients were compared in terms of frequency, phenotype, mesengenic/ angiogenic potential, and gene expression profile. Defective osteogenesis was recorded for MM-derived MPCs that showed longer angiogenic sprouting distances respect to non-hematological MPCs, retaining this capability after mesengenic induction. This altered MPCs differentiation potential was not detected in asymptomatic myelomatous disease. These in vitro experiments are suggestive of a forced angiogenic fate in MPCs isolated from MM patients, which also showed increased sprouting activity. Taking together our results suggest a possible role of these cells in the "angiogenic switch" in the MM micro-environment. between malignant plasma cells (PCs) and the bone marrow (BM) niche sustain and promote tumor growth [2]. Endothelial cells, stromal cells, osteoblasts, osteoclasts, and immune cells together with the extracellular matrix are involved in the process. Cross-talks between neoplastic www.oncotarget.com

Research paper thumbnail of The Polycomb BMI1 Protein Is Co-expressed With CD26+ in Leukemic Stem Cells of Chronic Myeloid Leukemia

Frontiers in Oncology, 2018

Research paper thumbnail of Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, which is lost after mesengenic differentiation

Stem cell research & therapy, May 2, 2017

Mesangiogenic progenitor cells (MPCs) have shown the ability to differentiate in-vitro toward mes... more Mesangiogenic progenitor cells (MPCs) have shown the ability to differentiate in-vitro toward mesenchymal stromal cells (MSCs) as well as angiogenic potential. MPCs have so far been described in detail as progenitors of the mesodermal lineage and appear to be of great significance in tissue regeneration and in hemopoietic niche regulation. On the contrary, information regarding the MPC angiogenic process is still incomplete and requires further clarification. In particular, genuine MPC angiogenic potential should be confirmed in-vivo. In the present article, markers and functions associated with angiogenic cells have been dissected. MPCs freshly isolated from human bone marrow have been induced to differentiate into exponentially growing MSCs (P2-MSCs). Cells have been characterized and angiogenesis-related gene expression was evaluated before and after mesengenic differentiation. Moreover, angiogenic potential has been tested by in-vitro and in-vivo functional assays. MPCs showed a...

Research paper thumbnail of Nanotopography Induced Human Bone Marrow Mesangiogenic Progenitor Cells (MPCs) to Mesenchymal Stromal Cells (MSCs) Transition

Frontiers in Cell and Developmental Biology, 2016

Mesangiogenic progenitor cells (MPCs) are a very peculiar population of cells present in the huma... more Mesangiogenic progenitor cells (MPCs) are a very peculiar population of cells present in the human adult bone marrow, only recently discovered and characterized. Owing to their differentiation potential, MPCs can be considered progenitors for mesenchymal stromal cells (MSCs), and for this reason they potentially represent a promising cell population to apply for skeletal tissue regeneration applications. Here, we evaluate the effects of surface nanotopography on MPCs, considering the possibility that this specific physical stimulus alone can trigger MPC differentiation toward the mesenchymal lineage. In particular, we exploit nanogratings to deliver a mechanical, directional stimulus by contact interaction to promote cell morphological polarization and stretching. Following this interaction, we study the MPC-MSC transition by i. analyzing the change in cell morphotype by immunostaining of the key cell-adhesion structures and confocal fluorescence microscopy, and ii. quantifying the expression of cell-phenotype characterizing markers by flow cytometry. We demonstrate that the MPC mesengenic differentiation can be induced by the solely interaction with the NGs, in absence of any other external, chemical stimulus. This aspect is of particular interest in the case of multipotent progenitors as MPCs that, retaining both mesengenic and angiogenic potential, possess a high clinical appeal.

Research paper thumbnail of Growth Factor Content in Human Sera Affects the Isolation of Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow

Frontiers in Cell and Developmental Biology, 2016

Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated i... more Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated in vitro under selective culture conditions and shown to retain both mesengenic and angiogenic potential. MPCs also co-isolated with multipotent stromal cells (MSCs) when bone marrow primary cultures were set up for clinical applications, using human serum (HS) in place of fetal bovine serum (FBS). MPC culture purity (over 95%) is strictly dependent on HS supplementation with significant batch-to-batch variability. In the present paper we screened different sources of commercially available pooled human AB type serum (PhABS) for their ability to promote MPC production under selective culture conditions. As the majority of "contaminating" cells in MPC cultures were represented by MSC-like cells, we hypothesized a role by differentiating agents present in the sera. Therefore, we tested a number of growth factors (hGF) and found that higher concentrations of FGF-2, EGF, PDGF-AB, and VEGF-A as well as lower concentration of IGF-1 give sub-optimal MPC recovery. Gene expression analysis of hGF receptors was also carried out both in MSCs and MPCs, suggesting that FGF-2, EGF, and PDGF-AB could act promoting MSC proliferation, while VEGF-A contribute to MSC-like cell contamination, triggering MPC differentiation. Here we demonstrated that managing hGF contents, together with applying specific receptors inhibitors (Erlotinib-HCl and Nintedanib), could significantly mitigate the batch-to-batch variability related to serum supplementation. These data represent a fundamental milestone in view of manufacturing MPC-based medicinal products.

Research paper thumbnail of Human mesenchymal stromal cell-enhanced osteogenic differentiation by contact interaction with polyethylene terephthalate nanogratings

Biomedical Materials, 2016

Among the very large number of polymeric materials that have been proposed in the field of orthop... more Among the very large number of polymeric materials that have been proposed in the field of orthopedics, polyethylene terephthalate (PET) is one of the most attractive thanks to its flexibility, thermal resistance, mechanical strength and durability. Several studies have been proposed that interface nano- or micro-structured surfaces with mesenchymal stromal cells (MSCs), demonstrating the potential of this technology for promoting osteogenesis. All these studies were carried out on biomaterials other than PET, which remains almost uninvestigated in terms of cell shaping, alignment and differentiation. Here, we study the effect of PET 350-depth nanogratings (NGs) with a ridge and lateral groove size of 500 nm (T1) or 1 μm (T2), on bone marrow-derived human MSC (hMSC) differentiation in relation to the osteogenic fate. We demonstrate that these substrates, especially T2, can promote the osteogenic phenotype more efficiently than standard flat surfaces and that this effect is more marked if cells are cultured in osteogenic medium than in basal medium. Finally, we show that the shape and disposition of calcium hydroxyapatite granules on the different substrates was influenced by the substrate symmetry, being more elongated and spatially organized on NGs than on flat surfaces.

Research paper thumbnail of Selective Culture of Mesodermal Progenitor Cells

Stem Cells and Development, 2009

We have recently identifi ed mesodermal progenitor cells (MPCs) isolated from adult human bone ma... more We have recently identifi ed mesodermal progenitor cells (MPCs) isolated from adult human bone marrow. These cells show unusual phenotypes, having putative embryonic markers and aldehyde dehydrogenase (ALDH) activity. Interestingly, these resting cells, which have been selected by culturing them in the presence of adult human serum, can easily be induced to differentiate into mature mesenchymal stromal cells (MSCs) after substituting the adult human serum for fetal bovine serum (FBS) or human cord serum. MPC-derived MSCs are, in turn, able to differentiate toward osteoblasts, chondrocytes, and adipocytes. Furthermore, MPCs are able to differentiate into endothelial cells. MPCs have been proven to be strongly adherent to plastic culture bottles and to be trypsin-resistant. In the present article, we show a simple and inexpensive method to isolate highly selected mesodermal progenitors from bone marrow or cord blood. The optimization of standard culture conditions (using commercial human AB sera and appropriate concentrations for cell seeding in plastics) allows a pure population of MPCs to be obtained even after a short culture period. We believe that this simple, repeatable, and standardized method will facilitate studies on MPCs.

Research paper thumbnail of Specific Integrin Expression Is Associated with Podosome-Like Structures on Mesodermal Progenitor Cells

Stem Cells and Development, 2013

Mesenchymal stromal cells (MSCs) are a heterogeneous cell population capable of differentiating t... more Mesenchymal stromal cells (MSCs) are a heterogeneous cell population capable of differentiating toward several cell lines in vitro and, possibly, in vivo. Within cultured MSCs, we identified and purified a precursor cell population [mesodermal progenitor cells (MPCs)] retaining robust proliferation potential and ability to differentiate into endothelial or mesenchymal cells. MPC-derived MSCs retain the ability to further differentiate into osteoblasts, cartilage, or fat cells. Here we further characterized MPCs and MSCs by evaluating expression of integrins and adhesion molecules showing their ability to assemble the molecular machinery involved in endothelium adhesion. MPCs were shown to interact with activated and nonactivated endothelium, whereas MSCs exhibited activation of focal adhesion complexes, higher cell motility, and reduced or absent adhesiveness onto endothelial cells, suggesting a matrix remodeling vocation. We also reported a consistent expression of CXCR4 on the MPC cell surface, suggesting that the different phenotypic behavior could be related to specific functions of the cell in each differentiation stage.

Research paper thumbnail of Mesodermal progenitor cells (MPCs) differentiate into mesenchymal stromal cells (MSCs) by activation of Wnt5/calmodulin signalling pathway

PloS one, 2011

Mesenchymal Stromal Cells (MSCs) remain poorly characterized because of the absence of manifest p... more Mesenchymal Stromal Cells (MSCs) remain poorly characterized because of the absence of manifest physical, phenotypic, and functional properties in cultured cell populations. Despite considerable research on MSCs and their clinical application, the biology of these cells is not fully clarified and data on signalling activation during mesenchymal differentiation and proliferation are controversial. The role of Wnt pathways is still debated, partly due to culture heterogeneity and methodological inconsistencies. Recently, we described a new bone marrow cell population isolated from MSC cultures that we named Mesodermal Progenitor Cells (MPCs) for their mesenchymal and endothelial differentiation potential. An optimized culture method allowed the isolation from human adult bone marrow of a highly pure population of MPCs (more than 97%), that showed the distinctive SSEA-4+CD105+CD90(neg) phenotype and not expressing MSCA-1 antigen. Under these selective culture conditions the percentage ...

Research paper thumbnail of Constitutive Expression of Pluripotency-Associated Genes in Mesodermal Progenitor Cells (MPCs)

PLoS ONE, 2010

Background: We recently characterized a progenitor of mesodermal lineage (MPCs) from the human bo... more Background: We recently characterized a progenitor of mesodermal lineage (MPCs) from the human bone marrow of adults or umbilical cord blood. These cells are progenitors able to differentiate toward mesenchymal, endothelial and cardiomyogenic lineages. Here we present an extensive molecular characterization of MPCs, from bone marrow samples, including 39 genes involved in stem cell machinery, differentiation and cell cycle regulation. Methodology/Principal Findings: MPCs are cytofluorimetrically characterized and quantitative RT-PCR was performed to evaluate the gene expression profile, comparing it with MSCs and hESCs lines. Immunofluorescence and dot-blot analysis confirm qRT-PCR data. MPCs exhibit an increased expression of OCT4, NANOG, SALL4, FBX15, SPP1 and to a lesser extent c-MYC and KLF4, but lack LIN28 and SOX2. MPCs highly express SOX15. Conclusions/Significance: MPCs express many pluripotency-associated genes and show a peculiar Oct-4 molecular circuit. Understanding this unique molecular mechanism could lead to identifying MPCs as feasible, long telomeres, target cells for reprogramming with no up-regulation of the p53 pathway. Furthermore MPCs are easily and inexpensively harvested from human bone marrow.

Research paper thumbnail of Identification and Purification of Mesodermal Progenitor Cells From Human Adult Bone Marrow

Stem Cells and Development, 2009

Bone marrow-derived mesodermal stem cells may differentiate toward several lines and are easily c... more Bone marrow-derived mesodermal stem cells may differentiate toward several lines and are easily cultured in vitro. Some putative progenitors of these cells have been described in both humans and mice. Here, we describe a new mesodermal progenitor population [mesodermal progenitors cells (MPCs)] able to differentiate into mesenchymal cells upon appropriate culture conditions. When cultured in presence of autologous serum, these cells are strongly adherent to plastic, resistant to trypsin detachment, and resting. Mesodermal progenitor cells may be pulsed to proliferate and differentiate by substituting autologous serum for human cord blood serum or fetal calf serum. By these methods cells proliferate and differentiate toward mesenchymal cells and thus may further differentiate into osteoblats, chondrocytes, or adipocytes. Moreover MPCs are capable to differentiate in endothelial cells (ECs) showing characteristics similar to microvessel endothelium cells. Mesodermal progenitors cells have a defi ned phenotype and carry embryonic markers not present in mesenchymal cells. Moreover MPCs strongly express aldehyde dehydrogenase activity, usually present in hematopoietic precursors but absent in mesenchymal cells. When these progenitors are pulsed to differentiate, they lose these markers and acquire the mesenchymal ones. Interestingly, mesenchymal cells may not be induced to back differentiate into MPCs. Our results demonstrate the adult serum role in maintaining pluripotent mesodermal precursors and allow isolation of these cells. After purifi cation, MPCs may be pulsed to proliferate in a very large scale and then induced to differentiate, thus possibly allowing their use in regenerative medicine.

Research paper thumbnail of Isolating Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow

Journal of Visualized Experiments, 2016

In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (M... more In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (MSCs) for clinical applications, we identified a novel cell population specifically selected for growth in human serum supplemented medium. These cells are characterized by morphological, phenotypic, and molecular features distinct from MSCs and we named them Mesodermal Progenitor Cells (MPCs). MPCs are round, with a thick highly refringent core region; they show strong, trypsin resistant adherence to plastic. Failure to expand MPCs directly revealed that they are slow in cycling. This is as also suggested by Ki-67 negativity. On the other hand, culturing MPCs in standard medium designed for MSC expansion, gave rise to a population of exponentially growing MSC-like cells. Besides showing mesenchymal differentiation capacity MPCs retained angiogenic potential, confirming their multiple lineage progenitor nature. Here we describe an optimized highly reproducible protocol to isolate and characterize hBM-MPCs by flow cytometry (CD73, CD90, CD31, and CD45), nestin expression, and F-actin organization. Protocols for mesengenic and angiogenic differentiation of MPCs are also provided. Here we also suggest a more appropriate nomenclature for these cells, which has been renamed as "Mesangiogenic Progenitor Cells".

Research paper thumbnail of Growth Factor Content in Human Sera Affects the Isolation of Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow

Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated i... more Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated in vitro under selective culture conditions and shown to retain both mesengenic and angiogenic potential. MPCs also co-isolated with multipotent stromal cells (MSCs) when bone marrow primary cultures were set up for clinical applications, using human serum (HS) in place of fetal bovine serum (FBS). MPC culture purity (over 95%) is strictly dependent on HS supplementation with significant batch-to-batch variability. In the present paper we screened different sources of commercially available pooled human AB type serum (PhABS) for their ability to promote MPC production under selective culture conditions. As the majority of " contaminating " cells in MPC cultures were represented by MSC-like cells, we hypothesized a role by differentiating agents present in the sera. Therefore, we tested a number of growth factors (hGF) and found that higher concentrations of FGF-2, EGF, PDGF-AB, and VEGF-A as well as lower concentration of IGF-1 give sub-optimal MPC recovery. Gene expression analysis of hGF receptors was also carried out both in MSCs and MPCs, suggesting that FGF-2, EGF, and PDGF-AB could act promoting MSC proliferation, while VEGF-A contribute to MSC-like cell contamination, triggering MPC differentiation. Here we demonstrated that managing hGF contents, together with applying specific receptors inhibitors (Erlotinib-HCl and Nintedanib), could significantly mitigate the batch-to-batch variability related to serum supplementation. These data represent a fundamental milestone in view of manufacturing MPC-based medicinal products.

Research paper thumbnail of Isolating Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow

In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (M... more In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (MSCs) for clinical applications, we identified a novel cell population specifically selected for growth in human serum supplemented medium. These cells are characterized by morphological, phenotypic, and molecular features distinct from MSCs and we named them Mesodermal Progenitor Cells (MPCs). MPCs are round, with a thick highly refringent core region; they show strong, trypsin resistant adherence to plastic. Failure to expand MPCs directly revealed that they are slow in cycling. This is as also suggested by Ki-67 negativity. On the other hand, culturing MPCs in standard medium designed for MSC expansion, gave rise to a population of exponentially growing MSC-like cells. Besides showing mesenchymal differentiation capacity MPCs retained angiogenic potential, confirming their multiple lineage progenitor nature. Here we describe an optimized highly reproducible protocol to isolate and characterize hBM-MPCs by flow cytometry (CD73, CD90, CD31, and CD45), nestin expression, and F-actin organization. Protocols for mesengenic and angiogenic differentiation of MPCs are also provided. Here we also suggest a more appropriate nomenclature for these cells, which has been renamed as "Mesangiogenic Progenitor Cells". Video Link The video component of this article can be found at http://www.jove.com/video/54225/