Mark Morgan - Academia.edu (original) (raw)
Uploads
Papers by Mark Morgan
2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2014
2014 IEEE Radio Frequency Integrated Circuits Symposium, 2014
This paper presents new circuit topologies and design techniques for low-phase-noise CMOS mmWave ... more This paper presents new circuit topologies and design techniques for low-phase-noise CMOS mmWave Quadrature VCO (QVCO) and VCOs. A transformer coupling with extra phase shift is proposed in QVCO to decouple the tradeoff between phase noise (PN) and phase error and improve the PN performance. This technique is demonstrated in a mmWave QVCO with a measured PN of -119.2dBc/Hz at 10MHz offset of a 56.2GHz carrier and a tuning range of 9.1% (FOM T of -179dBc/Hz). To our best knowledge, this QVCO has the lowest PN at 10MHz offset among all the QVCOs around 50-60GHz frequency range. In addition, an inductive divider feedback technique is proposed in VCO design to improve the transconductance linearity, resulting in larger signal swing and lower PN compared to the conventional LC VCOs. The effectiveness of this approach is demonstrated in a 76GHz VCO and a 90GHz VCO, both fabricated in a 65nm CMOS process, with an FOM T of 173.6dBc/Hz and 173.1dBc/Hz, respectively. Index Terms -VCO, quadrature VCO (QVCO), phase noise, transformer, transconductance linearization.
2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2014
2014 IEEE Radio Frequency Integrated Circuits Symposium, 2014
This paper presents new circuit topologies and design techniques for low-phase-noise CMOS mmWave ... more This paper presents new circuit topologies and design techniques for low-phase-noise CMOS mmWave Quadrature VCO (QVCO) and VCOs. A transformer coupling with extra phase shift is proposed in QVCO to decouple the tradeoff between phase noise (PN) and phase error and improve the PN performance. This technique is demonstrated in a mmWave QVCO with a measured PN of -119.2dBc/Hz at 10MHz offset of a 56.2GHz carrier and a tuning range of 9.1% (FOM T of -179dBc/Hz). To our best knowledge, this QVCO has the lowest PN at 10MHz offset among all the QVCOs around 50-60GHz frequency range. In addition, an inductive divider feedback technique is proposed in VCO design to improve the transconductance linearity, resulting in larger signal swing and lower PN compared to the conventional LC VCOs. The effectiveness of this approach is demonstrated in a 76GHz VCO and a 90GHz VCO, both fabricated in a 65nm CMOS process, with an FOM T of 173.6dBc/Hz and 173.1dBc/Hz, respectively. Index Terms -VCO, quadrature VCO (QVCO), phase noise, transformer, transconductance linearization.