Martin Petras - Academia.edu (original) (raw)

Papers by Martin Petras

Research paper thumbnail of Why mitochondria are excellent targets for cancer therapy

Klinická onkologie : casopis Ceské a Slovenské onkologické spolecnosti, 2012

New insights into cancer cells - specific biological pathways are urgently needed to promote deve... more New insights into cancer cells - specific biological pathways are urgently needed to promote development of exactly targeted therapeutics. The role of oncoproteins and tumor suppressor proteins in proliferative signaling, cell cycle regulation and altered adhesion is well established. Chemicals, viruses and radiation are also generally accepted as agents that commonly induce mutations in genes encoding these cancer-inducing proteins, thereby giving rise to cancer. More recent evidence indicates the importance of two additional key factors imposed on proliferating cells - hypoxia and/or lack of glucose. These two additional triggers can initiate and promote the process of malignant transformation, when a low percentage of cells escape cellular senescence. Disregulated cell proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. Resulting hypoxia triggers a number of critical adaptations that enable ...

Research paper thumbnail of Why mitochondria are excellent targets for cancer therapy

Klinická onkologie : casopis Ceské a Slovenské onkologické spolecnosti, 2012

New insights into cancer cells - specific biological pathways are urgently needed to promote deve... more New insights into cancer cells - specific biological pathways are urgently needed to promote development of exactly targeted therapeutics. The role of oncoproteins and tumor suppressor proteins in proliferative signaling, cell cycle regulation and altered adhesion is well established. Chemicals, viruses and radiation are also generally accepted as agents that commonly induce mutations in genes encoding these cancer-inducing proteins, thereby giving rise to cancer. More recent evidence indicates the importance of two additional key factors imposed on proliferating cells - hypoxia and/or lack of glucose. These two additional triggers can initiate and promote the process of malignant transformation, when a low percentage of cells escape cellular senescence. Disregulated cell proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. Resulting hypoxia triggers a number of critical adaptations that enable ...

Research paper thumbnail of N-acetylcysteine Alleviates the Meconium-Induced Acute Lung Injury

Advances in Experimental Medicine and Biology, 2014

Meconium aspiration in newborns causes lung inflammation and injury, which may lead to meconium a... more Meconium aspiration in newborns causes lung inflammation and injury, which may lead to meconium aspiration syndrome (MAS). In this study, the effect of the antioxidant N-acetylcysteine on respiratory and inflammatory parameters were studied in a model of MAS. Oxygen-ventilated rabbits were intratracheally given 4 mL/kg of meconium (25 mg/mL) or saline. Thirty minutes later, meconium-instilled animals were administered N-acetylcysteine (10 mg/kg; i.v.), or were left without treatment. The animals were oxygen-ventilated for additional 5 h. Ventilatory pressures, oxygenation, right-to-left pulmonary shunts, and leukocyte count were measured. At the end of experiment, trachea and lung were excised. The left lung was saline-lavaged and a total and differential count of cells in bronchoalveolar lavage fluid (BAL) was determined. Right lung tissue strips were used for detection of lung edema (expressed as wet/dry weight ratio) and peroxidation (expressed by thiobarbituric acid-reactive substances, TBARS). In lung and tracheal strips, airway reactivity to acetylcholine was measured. In addition, TBARS and total antioxidant status were determined in the plasma. Meconium instillation induced polymorphonuclear-derived inflammation and oxidative stress. N-acetylcysteine improved oxygenation, reduced lung edema, decreased polymorphonuclears in BAL fluid, and diminished peroxidation and meconium-induced airway hyperreactivity compared with untreated animals. In conclusion, N-acetylcysteine effectively improved lung functions in an animal model of MAS.

Research paper thumbnail of Mechanisms Involved in the Ischemic Tolerance in Brain: Effect of the Homocysteine

Cellular and Molecular Neurobiology, 2014

Hyperhomocysteinemia (hHCy) is recognized as a co-morbid risk factor of human stroke. It also agg... more Hyperhomocysteinemia (hHCy) is recognized as a co-morbid risk factor of human stroke. It also aggravates the ischemia-induced injury by increased production of reactive oxygen species, and by the homocysteinylation and thiolation of functional proteins. Ischemic preconditioning represents adaptation of the CNS to sub-lethal ischemia, resulting in increased brain tolerance to subsequent ischemia. We present here an overview of recent data on the homocysteine (Hcy) metabolism and on the genetic and metabolic causes of hHCy-related neuropathologies in humans. In this context, the review documents for an increased oxidative stress and for the functional modifications of enzymes involved in the redox balance in experimentally induced hHCy. Hcy metabolism leads also to the redox imbalance and increased oxidative stress resulting in elevated lipoperoxidation and protein oxidation, the products known to be included in the neuronal degeneration. Additionally, we examine the effect of the experimental hHCy in combination with ischemic insult, and/or with the preischemic challenge on the extent of neuronal degeneration as well as the intracellular signaling and the regulation of DNA methylation. The review also highlights that identification of the effects of co-morbid factors in the mechanisms of ischemic tolerance mechanisms would lead to improved therapeutics, especially the brain tissue.

Research paper thumbnail of Why mitochondria are excellent targets for cancer therapy

Klinická onkologie : casopis Ceské a Slovenské onkologické spolecnosti, 2012

New insights into cancer cells - specific biological pathways are urgently needed to promote deve... more New insights into cancer cells - specific biological pathways are urgently needed to promote development of exactly targeted therapeutics. The role of oncoproteins and tumor suppressor proteins in proliferative signaling, cell cycle regulation and altered adhesion is well established. Chemicals, viruses and radiation are also generally accepted as agents that commonly induce mutations in genes encoding these cancer-inducing proteins, thereby giving rise to cancer. More recent evidence indicates the importance of two additional key factors imposed on proliferating cells - hypoxia and/or lack of glucose. These two additional triggers can initiate and promote the process of malignant transformation, when a low percentage of cells escape cellular senescence. Disregulated cell proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. Resulting hypoxia triggers a number of critical adaptations that enable ...

Research paper thumbnail of Why mitochondria are excellent targets for cancer therapy

Klinická onkologie : casopis Ceské a Slovenské onkologické spolecnosti, 2012

New insights into cancer cells - specific biological pathways are urgently needed to promote deve... more New insights into cancer cells - specific biological pathways are urgently needed to promote development of exactly targeted therapeutics. The role of oncoproteins and tumor suppressor proteins in proliferative signaling, cell cycle regulation and altered adhesion is well established. Chemicals, viruses and radiation are also generally accepted as agents that commonly induce mutations in genes encoding these cancer-inducing proteins, thereby giving rise to cancer. More recent evidence indicates the importance of two additional key factors imposed on proliferating cells - hypoxia and/or lack of glucose. These two additional triggers can initiate and promote the process of malignant transformation, when a low percentage of cells escape cellular senescence. Disregulated cell proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. Resulting hypoxia triggers a number of critical adaptations that enable ...

Research paper thumbnail of N-acetylcysteine Alleviates the Meconium-Induced Acute Lung Injury

Advances in Experimental Medicine and Biology, 2014

Meconium aspiration in newborns causes lung inflammation and injury, which may lead to meconium a... more Meconium aspiration in newborns causes lung inflammation and injury, which may lead to meconium aspiration syndrome (MAS). In this study, the effect of the antioxidant N-acetylcysteine on respiratory and inflammatory parameters were studied in a model of MAS. Oxygen-ventilated rabbits were intratracheally given 4 mL/kg of meconium (25 mg/mL) or saline. Thirty minutes later, meconium-instilled animals were administered N-acetylcysteine (10 mg/kg; i.v.), or were left without treatment. The animals were oxygen-ventilated for additional 5 h. Ventilatory pressures, oxygenation, right-to-left pulmonary shunts, and leukocyte count were measured. At the end of experiment, trachea and lung were excised. The left lung was saline-lavaged and a total and differential count of cells in bronchoalveolar lavage fluid (BAL) was determined. Right lung tissue strips were used for detection of lung edema (expressed as wet/dry weight ratio) and peroxidation (expressed by thiobarbituric acid-reactive substances, TBARS). In lung and tracheal strips, airway reactivity to acetylcholine was measured. In addition, TBARS and total antioxidant status were determined in the plasma. Meconium instillation induced polymorphonuclear-derived inflammation and oxidative stress. N-acetylcysteine improved oxygenation, reduced lung edema, decreased polymorphonuclears in BAL fluid, and diminished peroxidation and meconium-induced airway hyperreactivity compared with untreated animals. In conclusion, N-acetylcysteine effectively improved lung functions in an animal model of MAS.

Research paper thumbnail of Mechanisms Involved in the Ischemic Tolerance in Brain: Effect of the Homocysteine

Cellular and Molecular Neurobiology, 2014

Hyperhomocysteinemia (hHCy) is recognized as a co-morbid risk factor of human stroke. It also agg... more Hyperhomocysteinemia (hHCy) is recognized as a co-morbid risk factor of human stroke. It also aggravates the ischemia-induced injury by increased production of reactive oxygen species, and by the homocysteinylation and thiolation of functional proteins. Ischemic preconditioning represents adaptation of the CNS to sub-lethal ischemia, resulting in increased brain tolerance to subsequent ischemia. We present here an overview of recent data on the homocysteine (Hcy) metabolism and on the genetic and metabolic causes of hHCy-related neuropathologies in humans. In this context, the review documents for an increased oxidative stress and for the functional modifications of enzymes involved in the redox balance in experimentally induced hHCy. Hcy metabolism leads also to the redox imbalance and increased oxidative stress resulting in elevated lipoperoxidation and protein oxidation, the products known to be included in the neuronal degeneration. Additionally, we examine the effect of the experimental hHCy in combination with ischemic insult, and/or with the preischemic challenge on the extent of neuronal degeneration as well as the intracellular signaling and the regulation of DNA methylation. The review also highlights that identification of the effects of co-morbid factors in the mechanisms of ischemic tolerance mechanisms would lead to improved therapeutics, especially the brain tissue.