Martin White - Academia.edu (original) (raw)

Papers by Martin White

Research paper thumbnail of Computer-aided working-fluid design, thermodynamic optimisation and technoeconomic assessment of ORC systems for waste-heat recovery

Energy

The wider adoption of organic Rankine cycle (ORC) technology can be facilitated by improved therm... more The wider adoption of organic Rankine cycle (ORC) technology can be facilitated by improved thermodynamic performance and reduced costs. In this context the power system should be evaluated based on a thermeconomic assessment with the aim of improving economic viability. This paper couples the computer-aided molecular design (CAMD) of the working-fluid with thermodynamic modelling and optimisation, in addition to heat-exchanger sizing models, component cost correlations, and a thermoeconomic assessment. The proposed CAMD-ORC framework, based on the SAFT-γ Mie equation of state, allows the thermodynamic optimisation of the cycle and working-fluid in a single stage, thus removing subjective and pre-emptive screening criteria that would otherwise exist in conventional studies. Following validation, the framework is used to identify optimal working-fluids for three different heat sources (150, 250 and 350 ◦C), corresponding to small- to medium-scale applications. In each case, the optimal combination of working-fluid and ORC system is identified, and investment costs are evaluated. It is observed that fluids with low specific-investment costs (SIC) are different to those that maximise power output. The fluids with the lowest SIC are isoheptane, 2-pentene and 2-heptene, with SICs of 5,620, 2,760 and 2,070 £/kW respectively, and corresponding power outputs of 32.9, 136.6 and 213.9 kW.

Research paper thumbnail of A generalised assessment of working fluids and radial turbines for non-recuperated subcritical organic Rankine cycles

Energies, 2018

The aim of this paper is to conduct a generalised assessment of both optimal working fluids and r... more The aim of this paper is to conduct a generalised assessment of both optimal working fluids and radial turbine designs for small-scale organic Rankine cycle (ORC) systems across a range of heat-source temperatures. The former has been achieved by coupling a thermodynamic model of subcritical, non-recperated cycles with the Peng–Robinson equation of state, and optimising the working-fluid and cycle parameters for heat-source temperatures ranging between 80 ◦C and 360 ◦C. The critical temperature of the working fluid is found to be an important parameter governing working-fluid selection. Moreover, a linear correlation between heat-source temperature and the optimal critical temperature that achieves maximum power output has been found for heat-source temperatures below 300 ◦C (Tcr = 0.830Thi + 41.27). This correlation has been validated against cycle calculations completed for nine predefined working fluids using both the Peng–Robinson equation of state and using the REFPROP program. Ultimately, this simple correlation can be used to identify working-fluid candidates for a specific heat-source temperature. In the second half of this paper, the effect of the heat-source temperature on the optimal design of a radial-inflow turbine rotor for a 25 kW subcritical ORC system has been studied. As the heat-source temperature increases, the optimal blade-loading coefficient increases, whilst the optimal flow coefficient reduces. Furthermore, passage losses are dominant in turbines intended for low-temperature applications. However, at higher heat-source temperatures, clearance losses become more dominant owing to the reduced blade heights. This information can be used to identify the most direct route to efficiency improvements in these machines. Finally, it is observed that the transition from a conventional converging stator to a converging-diverging stator occurs at heat-source temperatures of approximately 165 ◦C, whilst radially-fibered turbines seem unsuitable as the heat-source temperature exceeds 250 ◦C; these conclusions can be used to inform expander design and selection at an early stage.

Research paper thumbnail of Supersonic flow of non-ideal fluids in nozzles: An application of similitude theory and lessons for ORC turbine design and flexible use considering system performance

Journal of Physics: Conference Series, 2017

A significant improvement in the economy-of-scale of small-scale organic Rankine cycle (ORC) syst... more A significant improvement in the economy-of-scale of small-scale organic Rankine cycle (ORC) systems can arise from the appropriate design of components that can be manufactured in large volumes and implemented flexibly into a wide range of systems and potential applications. This, in turn, requires accurate predictions of component performance that can capture variations in the cycle conditions, parameters or changes to the working fluid. In this paper previous work investigating a modified similitude theory used to predict the performance of subsonic ORC turbines is extended to analyse the supersonic flow of organic fluids within 2D converging-diverging nozzles. Two nozzles are developed using a minimum length method of characteristics design model coupled to REFPROP. These are designed for R245fa and Toluene as working fluids with nozzle exit Mach numbers of 1.4 and 1.7 respectively. First, the nozzle performance is confirmed using CFD simulations, and then further CFD simulations are performed to evaluate the performance of the same nozzles over a range of different inlet conditions and with different working fluids. The CFD simulations are compared to predictions made using the original and modified similitude theories, and also to predictions made by conserving the Prandtl-Meyer function for the different operating conditions. The results indicate that whilst the modified similitude model does not accurately predict nozzle performance, conserving the Prandtl- Meyer function allows to predict the nozzle outlet Mach number to within 2% providing there is not a significant change in the polytropic index. Finally, the effect of working fluid replacement on the ORC system is discussed, and preliminary results demonstrate the possibility of matching a particular turbine to a heat source through optimal working fluid selection.

Research paper thumbnail of Integrated computer-aided working-fluid design and thermoeconomic ORC system optimisation

Energy Procedia, 2017

District heating networks are commonly addressed in the literature as one of the most effective s... more District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, prolonging the investment return period. The main scope of this paper is to assess the feasibility of using the heat demand -outdoor temperature function for heat demand forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were compared with results from a dynamic heat demand model, previously developed and validated by the authors. The results showed that when only weather change is considered, the margin of error could be acceptable for some applications (the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and improve the accuracy of heat demand estimations.

Research paper thumbnail of Experimental investigation of the operating point of a 1-kW ORC system

Energy Procedia, 2017

District heating networks are commonly addressed in the literature as one of the most effective s... more District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, prolonging the investment return period. The main scope of this paper is to assess the feasibility of using the heat demand -outdoor temperature function for heat demand forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were compared with results from a dynamic heat demand model, previously developed and validated by the authors. The results showed that when only weather change is considered, the margin of error could be acceptable for some applications (the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and improve the accuracy of heat demand estimations.

Research paper thumbnail of Industrial waste-heat recovery through integrated computer-aided working-fluid and ORC system optimisation using SAFT-γ Mie

Energy Conversion and Management, 2017

A mixed-integer non-linear programming optimisation framework is formulated and developed that co... more A mixed-integer non-linear programming optimisation framework is formulated and developed that combines a molecular-based, group-contribution equation of state, SAFT-γ Mie, with a thermodynamic description of an organic Rankine cycle (ORC) power system. In this framework, a set of working fluids is described by its constituent functional groups (e.g., since we are focussing here on hydrocarbons: CH3 , CH2, etc.), and integer optimisation variables are introduced in the description the working-fluid structure. Molecular feasibility constraints are then defined to ensure all feasible working-fluid candidates can be found. This optimisation framework facilitates combining the computer-aided molecular design of the working fluid with the power-system optimisation into a single framework, thus removing subjective and pre-emptive screening criteria, and simultaneously moving towards the next generation of tailored working fluids and optimised systems for waste-heat recovery applications. SAFT-c Mie has not been previously employed in such a framework. The optimisation framework, which is based here on hydrocarbon functional groups, is first validated against an alternative formulation that uses (pseudo-experimental) thermodynamic property predictions from REFPROP, and against an optimisation study taken from the literature. The framework is then applied to three industrial waste-heat recovery applications. It is found that simple molecules, such as propane and propene, are the optimal ORC working fluids for a low-grade (150 °C) heat source, whilst molecules with increasing molecular complexity are favoured at higher temperatures. Specifically, 2-alkenes emerge as the optimal working fluids for medium-and higher-grade heat-sources in the 250–350 °C temperature range. Ultimately, the results demonstrate the potential of this framework to drive the search for the next generation of ORC systems, and to provide meaningful insights into identifying the working fluids that represent the optimal choices for targeted applications. Finally, the effects of the working-fluid structure on the expander and pump are investigated, and the suitability of group-contribution methods for evaluating the transport properties of hydrocarbon working-fluids are considered, in the context of performing complete thermoeconomic evaluations of these systems.

Research paper thumbnail of System and component modelling and optimisation for an efficient 10 kWe low-temperature organic Rankine cycle utilising a radial inflow expander

Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2015

Small-scale (10 kWe) organic Rankine cycles for low temperature applications such as heat recover... more Small-scale (10 kWe) organic Rankine cycles for low temperature applications such as heat recovery and solar power present a significant development opportunity but limited prototypes have been developed. This paper aims to address this by describing a system modelling tool which is used to select a working fluid, optimise cycle conditions, and preliminarily size a radial inflow rotor for an experimental test rig. The program is a steady-state sizing and optimisation tool which advances on current models by combining component models and cycle analysis with multi-objective optimisation and turbomachinery design aspects. Sizing and off-design pump and expander models are based on non-dimensional characteristic plots, whilst an additional design program achieves an expander rotor design. A novel objective function couples component and system performance with complexity. Results from an optimisation study indicate that R1234ze is the optimal working fluid for the defined objective function with a predicted net power output of 7.32 kWe, correlating to a cycle efficiency of 7.26%, and evaporator and condenser areas of 1.59 m2 and 2.40 m2, respectively. However, after considering operating pressures and fluid availability, R245fa has been highlighted as the most suitable fluid for a planned experimental radial expander test rig and a preliminary turbine design is proposed.

Research paper thumbnail of The impact of component performance on the overall cycle performance of small-scale low temperature organic Rankine cycles

IOP Conference Series: Materials Science and Engineering, 2015

Low temperature organic Rankine cycles offer a promising technology for the generation of power f... more Low temperature organic Rankine cycles offer a promising technology for the generation of power from low temperature heat sources. Small-scale systems (~10kW) are of significant interest, however there is a current lack of commercially viable expanders. For a potential expander to be economically viable for small-scale applications it is reasonable to assume that the same expander must have the ability to be implemented within a number of different ORC applications. It is therefore important to design and optimise the cycle considering the component performance, most notably the expander, both at different thermodynamic conditions, and using alternative organic fluids. This paper demonstrates a novel modelling methodology that combines a previously generated turbine performance map with cycle analysis to establish at what heat source conditions optimal system performance can be achieved using an existing turbine design. The results obtained show that the same turbine can be effectively utilised within a number of different ORC applications by changing the working fluid. By selecting suitable working fluids, this turbine can be used to convert pressurised hot water at temperatures between 360K and 400K, and mass flow rates between 0.45kg/s and 2.7kg/s, into useful power with outputs between 1.5kW and 27kW. This is a significant result since it allows the same turbine to be implemented into a variety of applications, improving the economy of scale. This work has also confirmed the suitability of the candidate turbine for a range of low temperature ORC applications.

Research paper thumbnail of The one-dimensional meanline design of radial turbines for small scale low temperature organic rankine cycles

ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015

This paper presents a complete radial turbine design methodology intended for the design of a sma... more This paper presents a complete radial turbine design methodology intended for the design of a small scale organic Rankine cycle (ORC) turbo expander. The design methodology is comprised of 1D meanline design, coupled with REFPROP for real fluid properties, and 3D geometrical construction of the turbine rotor, stator and volute. A novel method to predict the rotor passage velocity distribution also enables the rotor passage to be effectively designed to ensure a smooth expansion without requiring CFD analysis. The design method is used to construct two test turbines with target isentropic total-to-static efficiencies of 85%. The first expands air from 282.3kPa and 1073K with a total-to-static pressure ratio of 3 and mass flow rate of 0.1kg/s. The ORC turbine expands R245fa from 350K and 623kPa, with a pressure ratio of 2.5 and mass flow of 0.7kg/s. Comparison with design point CFD validates the turbine design program, predicting a mass flow rate of 0.104kg/s for the air turbine at the design point with a total-to-static isentropic efficiency of 84.73%. At the design mass flow rate and rotational speed, the ORC turbine achieves a total-to-static pressure ratio of 2.51 and a total-to-static isentropic efficiency of 84.87%.

Research paper thumbnail of The application of similitude theory for the performance prediction of radial turbines within small-scale low temperature organic Rankine cycles

Journal of Engineering for Gas Turbines and Power, 2015

For small-scale organic Rankine cycles (ORCs) to be a competitive technology, it is rea- sonable ... more For small-scale organic Rankine cycles (ORCs) to be a competitive technology, it is rea- sonable to assume that the same turbine design will be implemented into a range of dif- ferent applications. It is therefore critical to be able to predict turbine off-design performance over a range of different operating conditions while utilizing different work- ing fluids. Similitude theory can be used for this purpose, and it has been well validated for ideal gases. However, the same cannot be said for its applications to the organic flu- ids found within ORCs. This paper considers a candidate subsonic turbine design operat- ing with R245fa and the corresponding turbine performance map. Similitude theory is used to predict the performance of the same turbine operating at different inlet conditions using R245fa, R123, and R1234yf. The similitude predictions are compared to computa- tional fluid dynamics (CFD) results obtained using ANSYS CFX. The original similitude theory using turbine total inlet conditions was found to only apply within a small range of operating conditions, so a modified similitude theory has been suggested that uses the choked flow conditions instead. This modified similitude theory agrees with the CFD pre- dictions to within 2%, right up until the choked mass flow rate. Further studies consider- ing supersonic turbines are required to establish the applicability of similitude for applications beyond the choked pressure ratio.

Research paper thumbnail of Computer-aided working-fluid design, thermodynamic optimisation and technoeconomic assessment of ORC systems for waste-heat recovery

Energy

The wider adoption of organic Rankine cycle (ORC) technology can be facilitated by improved therm... more The wider adoption of organic Rankine cycle (ORC) technology can be facilitated by improved thermodynamic performance and reduced costs. In this context the power system should be evaluated based on a thermeconomic assessment with the aim of improving economic viability. This paper couples the computer-aided molecular design (CAMD) of the working-fluid with thermodynamic modelling and optimisation, in addition to heat-exchanger sizing models, component cost correlations, and a thermoeconomic assessment. The proposed CAMD-ORC framework, based on the SAFT-γ Mie equation of state, allows the thermodynamic optimisation of the cycle and working-fluid in a single stage, thus removing subjective and pre-emptive screening criteria that would otherwise exist in conventional studies. Following validation, the framework is used to identify optimal working-fluids for three different heat sources (150, 250 and 350 ◦C), corresponding to small- to medium-scale applications. In each case, the optimal combination of working-fluid and ORC system is identified, and investment costs are evaluated. It is observed that fluids with low specific-investment costs (SIC) are different to those that maximise power output. The fluids with the lowest SIC are isoheptane, 2-pentene and 2-heptene, with SICs of 5,620, 2,760 and 2,070 £/kW respectively, and corresponding power outputs of 32.9, 136.6 and 213.9 kW.

Research paper thumbnail of A generalised assessment of working fluids and radial turbines for non-recuperated subcritical organic Rankine cycles

Energies, 2018

The aim of this paper is to conduct a generalised assessment of both optimal working fluids and r... more The aim of this paper is to conduct a generalised assessment of both optimal working fluids and radial turbine designs for small-scale organic Rankine cycle (ORC) systems across a range of heat-source temperatures. The former has been achieved by coupling a thermodynamic model of subcritical, non-recperated cycles with the Peng–Robinson equation of state, and optimising the working-fluid and cycle parameters for heat-source temperatures ranging between 80 ◦C and 360 ◦C. The critical temperature of the working fluid is found to be an important parameter governing working-fluid selection. Moreover, a linear correlation between heat-source temperature and the optimal critical temperature that achieves maximum power output has been found for heat-source temperatures below 300 ◦C (Tcr = 0.830Thi + 41.27). This correlation has been validated against cycle calculations completed for nine predefined working fluids using both the Peng–Robinson equation of state and using the REFPROP program. Ultimately, this simple correlation can be used to identify working-fluid candidates for a specific heat-source temperature. In the second half of this paper, the effect of the heat-source temperature on the optimal design of a radial-inflow turbine rotor for a 25 kW subcritical ORC system has been studied. As the heat-source temperature increases, the optimal blade-loading coefficient increases, whilst the optimal flow coefficient reduces. Furthermore, passage losses are dominant in turbines intended for low-temperature applications. However, at higher heat-source temperatures, clearance losses become more dominant owing to the reduced blade heights. This information can be used to identify the most direct route to efficiency improvements in these machines. Finally, it is observed that the transition from a conventional converging stator to a converging-diverging stator occurs at heat-source temperatures of approximately 165 ◦C, whilst radially-fibered turbines seem unsuitable as the heat-source temperature exceeds 250 ◦C; these conclusions can be used to inform expander design and selection at an early stage.

Research paper thumbnail of Supersonic flow of non-ideal fluids in nozzles: An application of similitude theory and lessons for ORC turbine design and flexible use considering system performance

Journal of Physics: Conference Series, 2017

A significant improvement in the economy-of-scale of small-scale organic Rankine cycle (ORC) syst... more A significant improvement in the economy-of-scale of small-scale organic Rankine cycle (ORC) systems can arise from the appropriate design of components that can be manufactured in large volumes and implemented flexibly into a wide range of systems and potential applications. This, in turn, requires accurate predictions of component performance that can capture variations in the cycle conditions, parameters or changes to the working fluid. In this paper previous work investigating a modified similitude theory used to predict the performance of subsonic ORC turbines is extended to analyse the supersonic flow of organic fluids within 2D converging-diverging nozzles. Two nozzles are developed using a minimum length method of characteristics design model coupled to REFPROP. These are designed for R245fa and Toluene as working fluids with nozzle exit Mach numbers of 1.4 and 1.7 respectively. First, the nozzle performance is confirmed using CFD simulations, and then further CFD simulations are performed to evaluate the performance of the same nozzles over a range of different inlet conditions and with different working fluids. The CFD simulations are compared to predictions made using the original and modified similitude theories, and also to predictions made by conserving the Prandtl-Meyer function for the different operating conditions. The results indicate that whilst the modified similitude model does not accurately predict nozzle performance, conserving the Prandtl- Meyer function allows to predict the nozzle outlet Mach number to within 2% providing there is not a significant change in the polytropic index. Finally, the effect of working fluid replacement on the ORC system is discussed, and preliminary results demonstrate the possibility of matching a particular turbine to a heat source through optimal working fluid selection.

Research paper thumbnail of Integrated computer-aided working-fluid design and thermoeconomic ORC system optimisation

Energy Procedia, 2017

District heating networks are commonly addressed in the literature as one of the most effective s... more District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, prolonging the investment return period. The main scope of this paper is to assess the feasibility of using the heat demand -outdoor temperature function for heat demand forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were compared with results from a dynamic heat demand model, previously developed and validated by the authors. The results showed that when only weather change is considered, the margin of error could be acceptable for some applications (the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and improve the accuracy of heat demand estimations.

Research paper thumbnail of Experimental investigation of the operating point of a 1-kW ORC system

Energy Procedia, 2017

District heating networks are commonly addressed in the literature as one of the most effective s... more District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, prolonging the investment return period. The main scope of this paper is to assess the feasibility of using the heat demand -outdoor temperature function for heat demand forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were compared with results from a dynamic heat demand model, previously developed and validated by the authors. The results showed that when only weather change is considered, the margin of error could be acceptable for some applications (the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and improve the accuracy of heat demand estimations.

Research paper thumbnail of Industrial waste-heat recovery through integrated computer-aided working-fluid and ORC system optimisation using SAFT-γ Mie

Energy Conversion and Management, 2017

A mixed-integer non-linear programming optimisation framework is formulated and developed that co... more A mixed-integer non-linear programming optimisation framework is formulated and developed that combines a molecular-based, group-contribution equation of state, SAFT-γ Mie, with a thermodynamic description of an organic Rankine cycle (ORC) power system. In this framework, a set of working fluids is described by its constituent functional groups (e.g., since we are focussing here on hydrocarbons: CH3 , CH2, etc.), and integer optimisation variables are introduced in the description the working-fluid structure. Molecular feasibility constraints are then defined to ensure all feasible working-fluid candidates can be found. This optimisation framework facilitates combining the computer-aided molecular design of the working fluid with the power-system optimisation into a single framework, thus removing subjective and pre-emptive screening criteria, and simultaneously moving towards the next generation of tailored working fluids and optimised systems for waste-heat recovery applications. SAFT-c Mie has not been previously employed in such a framework. The optimisation framework, which is based here on hydrocarbon functional groups, is first validated against an alternative formulation that uses (pseudo-experimental) thermodynamic property predictions from REFPROP, and against an optimisation study taken from the literature. The framework is then applied to three industrial waste-heat recovery applications. It is found that simple molecules, such as propane and propene, are the optimal ORC working fluids for a low-grade (150 °C) heat source, whilst molecules with increasing molecular complexity are favoured at higher temperatures. Specifically, 2-alkenes emerge as the optimal working fluids for medium-and higher-grade heat-sources in the 250–350 °C temperature range. Ultimately, the results demonstrate the potential of this framework to drive the search for the next generation of ORC systems, and to provide meaningful insights into identifying the working fluids that represent the optimal choices for targeted applications. Finally, the effects of the working-fluid structure on the expander and pump are investigated, and the suitability of group-contribution methods for evaluating the transport properties of hydrocarbon working-fluids are considered, in the context of performing complete thermoeconomic evaluations of these systems.

Research paper thumbnail of System and component modelling and optimisation for an efficient 10 kWe low-temperature organic Rankine cycle utilising a radial inflow expander

Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2015

Small-scale (10 kWe) organic Rankine cycles for low temperature applications such as heat recover... more Small-scale (10 kWe) organic Rankine cycles for low temperature applications such as heat recovery and solar power present a significant development opportunity but limited prototypes have been developed. This paper aims to address this by describing a system modelling tool which is used to select a working fluid, optimise cycle conditions, and preliminarily size a radial inflow rotor for an experimental test rig. The program is a steady-state sizing and optimisation tool which advances on current models by combining component models and cycle analysis with multi-objective optimisation and turbomachinery design aspects. Sizing and off-design pump and expander models are based on non-dimensional characteristic plots, whilst an additional design program achieves an expander rotor design. A novel objective function couples component and system performance with complexity. Results from an optimisation study indicate that R1234ze is the optimal working fluid for the defined objective function with a predicted net power output of 7.32 kWe, correlating to a cycle efficiency of 7.26%, and evaporator and condenser areas of 1.59 m2 and 2.40 m2, respectively. However, after considering operating pressures and fluid availability, R245fa has been highlighted as the most suitable fluid for a planned experimental radial expander test rig and a preliminary turbine design is proposed.

Research paper thumbnail of The impact of component performance on the overall cycle performance of small-scale low temperature organic Rankine cycles

IOP Conference Series: Materials Science and Engineering, 2015

Low temperature organic Rankine cycles offer a promising technology for the generation of power f... more Low temperature organic Rankine cycles offer a promising technology for the generation of power from low temperature heat sources. Small-scale systems (~10kW) are of significant interest, however there is a current lack of commercially viable expanders. For a potential expander to be economically viable for small-scale applications it is reasonable to assume that the same expander must have the ability to be implemented within a number of different ORC applications. It is therefore important to design and optimise the cycle considering the component performance, most notably the expander, both at different thermodynamic conditions, and using alternative organic fluids. This paper demonstrates a novel modelling methodology that combines a previously generated turbine performance map with cycle analysis to establish at what heat source conditions optimal system performance can be achieved using an existing turbine design. The results obtained show that the same turbine can be effectively utilised within a number of different ORC applications by changing the working fluid. By selecting suitable working fluids, this turbine can be used to convert pressurised hot water at temperatures between 360K and 400K, and mass flow rates between 0.45kg/s and 2.7kg/s, into useful power with outputs between 1.5kW and 27kW. This is a significant result since it allows the same turbine to be implemented into a variety of applications, improving the economy of scale. This work has also confirmed the suitability of the candidate turbine for a range of low temperature ORC applications.

Research paper thumbnail of The one-dimensional meanline design of radial turbines for small scale low temperature organic rankine cycles

ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015

This paper presents a complete radial turbine design methodology intended for the design of a sma... more This paper presents a complete radial turbine design methodology intended for the design of a small scale organic Rankine cycle (ORC) turbo expander. The design methodology is comprised of 1D meanline design, coupled with REFPROP for real fluid properties, and 3D geometrical construction of the turbine rotor, stator and volute. A novel method to predict the rotor passage velocity distribution also enables the rotor passage to be effectively designed to ensure a smooth expansion without requiring CFD analysis. The design method is used to construct two test turbines with target isentropic total-to-static efficiencies of 85%. The first expands air from 282.3kPa and 1073K with a total-to-static pressure ratio of 3 and mass flow rate of 0.1kg/s. The ORC turbine expands R245fa from 350K and 623kPa, with a pressure ratio of 2.5 and mass flow of 0.7kg/s. Comparison with design point CFD validates the turbine design program, predicting a mass flow rate of 0.104kg/s for the air turbine at the design point with a total-to-static isentropic efficiency of 84.73%. At the design mass flow rate and rotational speed, the ORC turbine achieves a total-to-static pressure ratio of 2.51 and a total-to-static isentropic efficiency of 84.87%.

Research paper thumbnail of The application of similitude theory for the performance prediction of radial turbines within small-scale low temperature organic Rankine cycles

Journal of Engineering for Gas Turbines and Power, 2015

For small-scale organic Rankine cycles (ORCs) to be a competitive technology, it is rea- sonable ... more For small-scale organic Rankine cycles (ORCs) to be a competitive technology, it is rea- sonable to assume that the same turbine design will be implemented into a range of dif- ferent applications. It is therefore critical to be able to predict turbine off-design performance over a range of different operating conditions while utilizing different work- ing fluids. Similitude theory can be used for this purpose, and it has been well validated for ideal gases. However, the same cannot be said for its applications to the organic flu- ids found within ORCs. This paper considers a candidate subsonic turbine design operat- ing with R245fa and the corresponding turbine performance map. Similitude theory is used to predict the performance of the same turbine operating at different inlet conditions using R245fa, R123, and R1234yf. The similitude predictions are compared to computa- tional fluid dynamics (CFD) results obtained using ANSYS CFX. The original similitude theory using turbine total inlet conditions was found to only apply within a small range of operating conditions, so a modified similitude theory has been suggested that uses the choked flow conditions instead. This modified similitude theory agrees with the CFD pre- dictions to within 2%, right up until the choked mass flow rate. Further studies consider- ing supersonic turbines are required to establish the applicability of similitude for applications beyond the choked pressure ratio.