Matheus de Almeida Cruz - Academia.edu (original) (raw)

Papers by Matheus de Almeida Cruz

Research paper thumbnail of 3D Printed Scaffolds Manufactured with Biosilica from Marine Sponges for Bone Healing in a Cranial Defect in Rats

Marine Biotechnology, Mar 9, 2023

Research paper thumbnail of Erythrosine as a photosensitizer for antimicrobial photodynamic therapy with blue light-emitting diodes – An in vitro study

Photodiagnosis and Photodynamic Therapy, Sep 1, 2021

BACKGROUND This study aims to test the absorbance of a new composition of erythrosine, its pH, ce... more BACKGROUND This study aims to test the absorbance of a new composition of erythrosine, its pH, cell viability and potencial against Candida albicans when irratiaded with blue light emitting-diode (LED). METHODS For pH and absorbance tests, erythrosine was prepared at a concentration of 0.03/ml. The cells of the L929 strain were cultured and the alamarBlue® assay was performed on samples to assess cell viability. For the microbiological essay, the strain of Candida albicans ATCC 90028 was selected. Yeast suspensions were divided into the following groups: control without irradiation or photosensitizer (C), irradiated group without photosensitizer (L), photosensitizer group without irradiation (0), and groups that received photosensitizer and irradiation, called aPDT groups. RESULTS Erythrosine had no significant changes in pH and its absorbance was also consistent (≅400 nm). When it came to cell viability, on the first day, the group that was in contact with the dye and irradiated with the LED in minimun power was found to have the higher cell proliferation. On day 3, both irradiated groups (maximum and minimum) showed the highest cell proliferation. In the microbiological essay with C. albicans, aPDT groups started to show microbial reduction after 60 and 90 s of irradiation and when irradiated for 120 s, 6 microbial reduction logs were found. CONCLUSIONS The erythrosine in question is a potencial PS, with pH stability, blue light absorbance, cell viability and efficacy against C. albicans. More studies with this PS should be encouraged in order to verify its clinical performance in aPDT.

Research paper thumbnail of Photobiomodulation in diabetic rats: Effects on morphological, pancreatic parameters, and glucose homeostasis

Journal of Biophotonics

Photobiomodulation (PBM) has therapeutic effects on wound healing, diabetic microangiopathy, and ... more Photobiomodulation (PBM) has therapeutic effects on wound healing, diabetic microangiopathy, and retinopathy. However, little is known about the use of PBM for the treatment of diabetes mellitus (DM). In this context, we aimed to evaluate the effects of PBM on pancreas morphology and insulin and glucose tolerance in an experimental model of DM. Thus, DM was induced by streptozotocin (STZ) (60 mg/kg). Subsequently, the rats were treated with PBM (808 nm and 30 J/cm2). After euthanasia, morphometric parameters and immunoreactivity for insulin and 8‐OHdG were evaluated in the pancreas. The results showed that treated animals had higher values of body mass and higher values in the number of beta cells in the pancreas. In conclusion, PBM resulted in decreased weight loss in STZ‐induced diabetic rats and presented a stimulatory effect on the pancreas of the treated animals, highlighting the promising effects of this therapy in the clinical condition of DM.

Research paper thumbnail of 3D Printed Scaffolds Manufactured with Biosilica from Marine Sponges for Bone Healing in a Cranial Defect in Rats

Research paper thumbnail of Different Species of Marine Sponges Diverge in Osteogenic Potential When Therapeutically Applied as Natural Scaffolds for Bone Regeneration in Rats

Journal of Functional Biomaterials

A highly porous structure, and an inorganic (biosilica) and collagen-like organic content (spongi... more A highly porous structure, and an inorganic (biosilica) and collagen-like organic content (spongin) makes marine sponges potential candidates to be used as natural scaffolds in bone tissue engineering. The aim of this study was to characterize (through SEM, FTIR, EDS, XRD, pH, mass degradation and porosity tests) scaffolds produced from two species of marine sponges, Dragmacidon reticulatum (DR) and Amphimedon viridis (AV), and to evaluate the osteogenic potential of these scaffolds by using a bone defect model in rats. First, it was shown that the same chemical composition and porosity (84 ± 5% for DR and 90 ± 2% for AV) occurs among scaffolds from the two species. Higher material degradation was observed in the scaffolds of the DR group, with a greater loss of organic matter after incubation. Later, scaffolds from both species were surgically introduced in rat tibial defects, and histopathological analysis after 15 days showed the presence of neo-formed bone and osteoid tissue wit...

Research paper thumbnail of Scaffold Production and Bone Tissue Healing Using Electrospinning: Trends and Gap of Knowledge

Regenerative Engineering and Translational Medicine

Research paper thumbnail of Fish collagen for skin wound healing: a systematic review in experimental animal studies

Cell and Tissue Research

Collagen extracted from fishes has been appearing as an alternative for commercial porcine and bo... more Collagen extracted from fishes has been appearing as an alternative for commercial porcine and bovine collagen and it has been considered interesting especially for membrane manufacturing in tissue engineering. Despite the positive in vitro effects of fish collagen membranes, there is still no understanding of all the benefits that this natural biomaterial plays in the wound healing process, due to the lack of compilation of the results obtained in animal studies. In this sense, the purpose of this study was to perform a systematic review of the literature to examine the effects of fish collagen membranes for skin wound healing in experimental models of skin wound. The search was carried out according to the orientations of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), and the descriptors of the Medical Subject Headings (MeSH) were defined: "fish," collagen," "skin," and "in vivo". A total of 10 articles were retrieved from the databases PubMed and Scopus. After the elegibility analyses, this review covers the different origins of fish collagen reported in the different papers from the beginning of 2015 through the middle of 2021. The results were based mainly on histological analysis and macroscopic evaluation, and fish skin collagen was responsible for improving the wound healing rate and the process of reepithelization and collagen deposition. In conclusion, fish skin collagen has shown positive results in in vivo studies and may be a potential biomaterial in tissue engineering.

Research paper thumbnail of Association of marine Collagen/Biosilicate composites and photobiomodulation in the process of bone healing using an experimental model of calvarial defect

Research, Society and Development, 2021

The study comparing the bone regenerative capacity in an experimental model of cranial bone defec... more The study comparing the bone regenerative capacity in an experimental model of cranial bone defects in rats, into 3 groups: G1: bone defects irradiated with photobiomodulation; G2: Biosilicate + photobiomodulation and G3: Biosilicate and Spongin + photobiomodulation. Histocompatibility and bone responses were performed after 15 and 45 days of implantation. Histological analysis demonstrated that photobiomodulation irradiated animals presented an increased amount of newly formed over time. Histomorphometry showed higher values for bone volume for G3 and G1, higher values for osteoid volume and number of osteoblasts observed for G3 compared to G2. TGF-β immunolabelling was higher for G2. The values found for VEGF were higher for biosilicate (with or without spongin) 15 days of implantation with an increased difference being observed for G1, 45 days after surgery. In conclusion, the stimulus provided by photobiomodulation associated to the biomimetic composite increased bone formation ...

Research paper thumbnail of Erythrosine as a photosensitizer for antimicrobial photodynamic therapy with blue light-emitting diodes – An in vitro study

Photodiagnosis and Photodynamic Therapy, 2021

BACKGROUND This study aims to test the absorbance of a new composition of erythrosine, its pH, ce... more BACKGROUND This study aims to test the absorbance of a new composition of erythrosine, its pH, cell viability and potencial against Candida albicans when irratiaded with blue light emitting-diode (LED). METHODS For pH and absorbance tests, erythrosine was prepared at a concentration of 0.03/ml. The cells of the L929 strain were cultured and the alamarBlue® assay was performed on samples to assess cell viability. For the microbiological essay, the strain of Candida albicans ATCC 90028 was selected. Yeast suspensions were divided into the following groups: control without irradiation or photosensitizer (C), irradiated group without photosensitizer (L), photosensitizer group without irradiation (0), and groups that received photosensitizer and irradiation, called aPDT groups. RESULTS Erythrosine had no significant changes in pH and its absorbance was also consistent (≅400 nm). When it came to cell viability, on the first day, the group that was in contact with the dye and irradiated with the LED in minimun power was found to have the higher cell proliferation. On day 3, both irradiated groups (maximum and minimum) showed the highest cell proliferation. In the microbiological essay with C. albicans, aPDT groups started to show microbial reduction after 60 and 90 s of irradiation and when irradiated for 120 s, 6 microbial reduction logs were found. CONCLUSIONS The erythrosine in question is a potencial PS, with pH stability, blue light absorbance, cell viability and efficacy against C. albicans. More studies with this PS should be encouraged in order to verify its clinical performance in aPDT.

Research paper thumbnail of sj-pdf-1-jba-10.1177_0885328220922161 - Supplemental material for Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study

Supplemental material, sj-pdf-1-jba-10.1177_0885328220922161 for Marine spongin incorporation int... more Supplemental material, sj-pdf-1-jba-10.1177_0885328220922161 for Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study by Julia Risso Parisi, Kelly Rossetti Fernandes, Giovanna Caroline Aparecida do Vale, Alan de França Santana, Matheus de Almeida Cruz, Carlos Alberto Fortulan, Edgar Dutra Zanotto, Oscar Peitl, Renata Neves Granito and Ana Claudia Muniz Rennó in Journal of Biomaterials Applications

Research paper thumbnail of Intense Pulsed Light on skin rejuvenation: a systematic review

Archives of Dermatological Research, 2021

Aged skin is characterized by appearance of wrinkles, vascular lesions, hyperpigmentation, lentig... more Aged skin is characterized by appearance of wrinkles, vascular lesions, hyperpigmentation, lentignes, texture, rhytides, and pores. These changes occur under the influence of intrinsic and extrinsic factors, as hormone alterations and exposure to ultraviolet light (UV) irradiation, respectively. Skin changes associated with aging have been assuming an important role in nowadays and bring to affect the quality of life. Intense Pulsed Light (ILP) is a noncollimated, polychromatic, and noncoherent non-surgical cosmetic therapy to skin rejuvenation. This is the first systematic review evaluating ILP treatment on skin rejuvenation evaluated by digital photographs and self-reported treatment efficacy. A PRISMA compliant review includes a search of the databases Scopus and PubMed. Sixteen studies treating 637 participants (with Fitzpatrick skin types I to IV and age varying from 21 to 80 years) were included. Patients were treated a mean of 4.29 sessions (range 3–7). The most studies results showed the efficacy of IPL treatment in telangiectasia, wrinkles, pore, erythema, rhytids, texture, lentigines, hiperpigmentation, and photoaging score. Six studies showed IPL-positive effects in association with other treatment and seven studies showed superior effect of other treatment or association to IPL with other treatment related to IPL alone. Nine studies showed low methodological quality. In conclusion, ILP treatment is effective on skin rejuvenation. However, there is no consensus about the parameters and future studies are needed to sample size limitations, made RCTs with low risk of bias, and improve the methodological quality its. Trial registration: Prospero Systematic Review Registration ID: CRD42021237817.

Research paper thumbnail of Effects of photobiomodulation on glucose homeostasis and morphometric parameters in pancreatic islets of diabetic mice

Lasers in Medical Science, 2021

High-fat diets lead to accumulation of body fat that is associated with the onset of insulin resi... more High-fat diets lead to accumulation of body fat that is associated with the onset of insulin resistance and type II diabetes mellitus. On the other hand, photobiomodulation (PBM) is an electrophysical resource that interacts with cells, stimulating mitochondrial respiration, increasing ATP production, reducing key inflammatory mediators, inhibiting apoptosis, and stimulating angiogenesis. However, little is known about its therapeutic effectiveness on the development of diabetes in diet-induced obese mice. Thus, our aim was to evaluate the effect of PBM applied single point over the pancreas area on glucose homeostasis, insulin expression, and pancreatic morphometric parameters of mice submitted to high-fat diet for 12 weeks. Male mice C57BL6/J were divided into three groups: control group (C), diabetic group (D), and diabetic + PBM (D + PBM). The treatment with PBM started at 9th week and ended in the 12th week, applied 3 × /week. Body mass, fast blood glucose, and glucose and insulin tolerance were evaluated. Immunohistochemistry to detect insulin expression and pancreatic morphometry were also performed. At the end of 12th week, both groups submitted to high-fat diet showed an increase in body mass, adiposity, disturbances on glucose homeostasis, and high insulin expression when compared to the control group. However, mice treated with PBM had more discrete impairments on glucose homeostasis during the glucose tolerance test when compared to untreated D animals. Despite modest, the results were positive and encourage future investigations to explore different doses and duration of PBM to better elucidate its role in obesity-associated type 2 diabetes development.

Research paper thumbnail of Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study

Journal of Biomaterials Applications, 2020

Biomaterials and bone grafts, with the ability of stimulating tissue growth and bone consolidatio... more Biomaterials and bone grafts, with the ability of stimulating tissue growth and bone consolidation, have been emerging as very promising strategies to treat bone fractures. Despite its well-known positive effects of biosilicate (BS) on osteogenesis, its use as bone grafts in critical situations such as bone defects of high dimensions or in non-consolidated fractures may not be sufficient to stimulate tissue repair. Consequently, several approaches have been explored to improve the bioactivity of BS. A promising strategy to reach this aim is the inclusion of an organic part, such as collagen, in order to mimic bone structure. Thus, the present study investigated the biological effects of marine spongin (SPG)-enriched BS composites on the process of healing, using a critical experimental model of cranial bone defect in rats. Histopathological and immunohistochemistry analyzes were performed after two and six weeks of implantation to investigate the effects of the material on bone repa...

Research paper thumbnail of Evaluation of the In Vivo Biological Effects of Marine Collagen and Hydroxyapatite Composite in a Tibial Bone Defect Model in Rats

Marine Biotechnology, 2020

One of the most promising strategies to improve the biological performance of bone grafts is the ... more One of the most promising strategies to improve the biological performance of bone grafts is the combination of different biomaterials. In this context, the aim of this study was to evaluate the effects of the incorporation of marine spongin (SPG) into Hydroxyapatite (HA) for bone tissue engineering proposals. The hypothesis of the current study is that SPG into HA would improve the biocompatibility of material and would have a positive stimulus into bone formation. Thus, HA and HA/SPG materials were produced and scanning electron microscopy (SEM) analysis was performed to characterize the samples. Also, in order to evaluate the in vivo tissue response, samples were implanted into a tibial bone defect in rats. Histopathological, immunohistochemistry, and biomechanical analyses were performed after 2 and 6 weeks of implantation to investigate the effects of the material on bone repair. The histological analysis demonstrated that composite presented an accelerated material degradation and enhanced newly bone formation. Additionally, histomorphometry analysis showed higher values of %BV/TV and N.Ob/T.Ar for HA/SPG. Runx-2 immunolabeling was higher for the composite group and no difference was found for VEGF. Moreover, the biomechanical analysis demonstrated similar values for all groups. These results indicated the potential of SPG to be used as an additive to HA to improve the biological performance for bone regeneration applications. However, further longterm studies should be carried out to provide additional information regarding the material degradation and bone regeneration.

Research paper thumbnail of Characterization and Biological Performance of Marine Sponge Collagen

Brazilian Archives of Biology and Technology, 2021

Research paper thumbnail of Characterization and Cytotoxicity Evaluation of a Marine Sponge Biosilica

Marine Biotechnology, 2018

The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when th... more The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1 H and 13 C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs.

Research paper thumbnail of In Vivo Biological Effects of Marine Biosilica on a Tibial Bone Defect in Rats

Brazilian Archives of Biology and Technology, 2020

Research paper thumbnail of 3D Printed Scaffolds Manufactured with Biosilica from Marine Sponges for Bone Healing in a Cranial Defect in Rats

Marine Biotechnology, Mar 9, 2023

Research paper thumbnail of Erythrosine as a photosensitizer for antimicrobial photodynamic therapy with blue light-emitting diodes – An in vitro study

Photodiagnosis and Photodynamic Therapy, Sep 1, 2021

BACKGROUND This study aims to test the absorbance of a new composition of erythrosine, its pH, ce... more BACKGROUND This study aims to test the absorbance of a new composition of erythrosine, its pH, cell viability and potencial against Candida albicans when irratiaded with blue light emitting-diode (LED). METHODS For pH and absorbance tests, erythrosine was prepared at a concentration of 0.03/ml. The cells of the L929 strain were cultured and the alamarBlue® assay was performed on samples to assess cell viability. For the microbiological essay, the strain of Candida albicans ATCC 90028 was selected. Yeast suspensions were divided into the following groups: control without irradiation or photosensitizer (C), irradiated group without photosensitizer (L), photosensitizer group without irradiation (0), and groups that received photosensitizer and irradiation, called aPDT groups. RESULTS Erythrosine had no significant changes in pH and its absorbance was also consistent (≅400 nm). When it came to cell viability, on the first day, the group that was in contact with the dye and irradiated with the LED in minimun power was found to have the higher cell proliferation. On day 3, both irradiated groups (maximum and minimum) showed the highest cell proliferation. In the microbiological essay with C. albicans, aPDT groups started to show microbial reduction after 60 and 90 s of irradiation and when irradiated for 120 s, 6 microbial reduction logs were found. CONCLUSIONS The erythrosine in question is a potencial PS, with pH stability, blue light absorbance, cell viability and efficacy against C. albicans. More studies with this PS should be encouraged in order to verify its clinical performance in aPDT.

Research paper thumbnail of Photobiomodulation in diabetic rats: Effects on morphological, pancreatic parameters, and glucose homeostasis

Journal of Biophotonics

Photobiomodulation (PBM) has therapeutic effects on wound healing, diabetic microangiopathy, and ... more Photobiomodulation (PBM) has therapeutic effects on wound healing, diabetic microangiopathy, and retinopathy. However, little is known about the use of PBM for the treatment of diabetes mellitus (DM). In this context, we aimed to evaluate the effects of PBM on pancreas morphology and insulin and glucose tolerance in an experimental model of DM. Thus, DM was induced by streptozotocin (STZ) (60 mg/kg). Subsequently, the rats were treated with PBM (808 nm and 30 J/cm2). After euthanasia, morphometric parameters and immunoreactivity for insulin and 8‐OHdG were evaluated in the pancreas. The results showed that treated animals had higher values of body mass and higher values in the number of beta cells in the pancreas. In conclusion, PBM resulted in decreased weight loss in STZ‐induced diabetic rats and presented a stimulatory effect on the pancreas of the treated animals, highlighting the promising effects of this therapy in the clinical condition of DM.

Research paper thumbnail of 3D Printed Scaffolds Manufactured with Biosilica from Marine Sponges for Bone Healing in a Cranial Defect in Rats

Research paper thumbnail of Different Species of Marine Sponges Diverge in Osteogenic Potential When Therapeutically Applied as Natural Scaffolds for Bone Regeneration in Rats

Journal of Functional Biomaterials

A highly porous structure, and an inorganic (biosilica) and collagen-like organic content (spongi... more A highly porous structure, and an inorganic (biosilica) and collagen-like organic content (spongin) makes marine sponges potential candidates to be used as natural scaffolds in bone tissue engineering. The aim of this study was to characterize (through SEM, FTIR, EDS, XRD, pH, mass degradation and porosity tests) scaffolds produced from two species of marine sponges, Dragmacidon reticulatum (DR) and Amphimedon viridis (AV), and to evaluate the osteogenic potential of these scaffolds by using a bone defect model in rats. First, it was shown that the same chemical composition and porosity (84 ± 5% for DR and 90 ± 2% for AV) occurs among scaffolds from the two species. Higher material degradation was observed in the scaffolds of the DR group, with a greater loss of organic matter after incubation. Later, scaffolds from both species were surgically introduced in rat tibial defects, and histopathological analysis after 15 days showed the presence of neo-formed bone and osteoid tissue wit...

Research paper thumbnail of Scaffold Production and Bone Tissue Healing Using Electrospinning: Trends and Gap of Knowledge

Regenerative Engineering and Translational Medicine

Research paper thumbnail of Fish collagen for skin wound healing: a systematic review in experimental animal studies

Cell and Tissue Research

Collagen extracted from fishes has been appearing as an alternative for commercial porcine and bo... more Collagen extracted from fishes has been appearing as an alternative for commercial porcine and bovine collagen and it has been considered interesting especially for membrane manufacturing in tissue engineering. Despite the positive in vitro effects of fish collagen membranes, there is still no understanding of all the benefits that this natural biomaterial plays in the wound healing process, due to the lack of compilation of the results obtained in animal studies. In this sense, the purpose of this study was to perform a systematic review of the literature to examine the effects of fish collagen membranes for skin wound healing in experimental models of skin wound. The search was carried out according to the orientations of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), and the descriptors of the Medical Subject Headings (MeSH) were defined: "fish," collagen," "skin," and "in vivo". A total of 10 articles were retrieved from the databases PubMed and Scopus. After the elegibility analyses, this review covers the different origins of fish collagen reported in the different papers from the beginning of 2015 through the middle of 2021. The results were based mainly on histological analysis and macroscopic evaluation, and fish skin collagen was responsible for improving the wound healing rate and the process of reepithelization and collagen deposition. In conclusion, fish skin collagen has shown positive results in in vivo studies and may be a potential biomaterial in tissue engineering.

Research paper thumbnail of Association of marine Collagen/Biosilicate composites and photobiomodulation in the process of bone healing using an experimental model of calvarial defect

Research, Society and Development, 2021

The study comparing the bone regenerative capacity in an experimental model of cranial bone defec... more The study comparing the bone regenerative capacity in an experimental model of cranial bone defects in rats, into 3 groups: G1: bone defects irradiated with photobiomodulation; G2: Biosilicate + photobiomodulation and G3: Biosilicate and Spongin + photobiomodulation. Histocompatibility and bone responses were performed after 15 and 45 days of implantation. Histological analysis demonstrated that photobiomodulation irradiated animals presented an increased amount of newly formed over time. Histomorphometry showed higher values for bone volume for G3 and G1, higher values for osteoid volume and number of osteoblasts observed for G3 compared to G2. TGF-β immunolabelling was higher for G2. The values found for VEGF were higher for biosilicate (with or without spongin) 15 days of implantation with an increased difference being observed for G1, 45 days after surgery. In conclusion, the stimulus provided by photobiomodulation associated to the biomimetic composite increased bone formation ...

Research paper thumbnail of Erythrosine as a photosensitizer for antimicrobial photodynamic therapy with blue light-emitting diodes – An in vitro study

Photodiagnosis and Photodynamic Therapy, 2021

BACKGROUND This study aims to test the absorbance of a new composition of erythrosine, its pH, ce... more BACKGROUND This study aims to test the absorbance of a new composition of erythrosine, its pH, cell viability and potencial against Candida albicans when irratiaded with blue light emitting-diode (LED). METHODS For pH and absorbance tests, erythrosine was prepared at a concentration of 0.03/ml. The cells of the L929 strain were cultured and the alamarBlue® assay was performed on samples to assess cell viability. For the microbiological essay, the strain of Candida albicans ATCC 90028 was selected. Yeast suspensions were divided into the following groups: control without irradiation or photosensitizer (C), irradiated group without photosensitizer (L), photosensitizer group without irradiation (0), and groups that received photosensitizer and irradiation, called aPDT groups. RESULTS Erythrosine had no significant changes in pH and its absorbance was also consistent (≅400 nm). When it came to cell viability, on the first day, the group that was in contact with the dye and irradiated with the LED in minimun power was found to have the higher cell proliferation. On day 3, both irradiated groups (maximum and minimum) showed the highest cell proliferation. In the microbiological essay with C. albicans, aPDT groups started to show microbial reduction after 60 and 90 s of irradiation and when irradiated for 120 s, 6 microbial reduction logs were found. CONCLUSIONS The erythrosine in question is a potencial PS, with pH stability, blue light absorbance, cell viability and efficacy against C. albicans. More studies with this PS should be encouraged in order to verify its clinical performance in aPDT.

Research paper thumbnail of sj-pdf-1-jba-10.1177_0885328220922161 - Supplemental material for Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study

Supplemental material, sj-pdf-1-jba-10.1177_0885328220922161 for Marine spongin incorporation int... more Supplemental material, sj-pdf-1-jba-10.1177_0885328220922161 for Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study by Julia Risso Parisi, Kelly Rossetti Fernandes, Giovanna Caroline Aparecida do Vale, Alan de França Santana, Matheus de Almeida Cruz, Carlos Alberto Fortulan, Edgar Dutra Zanotto, Oscar Peitl, Renata Neves Granito and Ana Claudia Muniz Rennó in Journal of Biomaterials Applications

Research paper thumbnail of Intense Pulsed Light on skin rejuvenation: a systematic review

Archives of Dermatological Research, 2021

Aged skin is characterized by appearance of wrinkles, vascular lesions, hyperpigmentation, lentig... more Aged skin is characterized by appearance of wrinkles, vascular lesions, hyperpigmentation, lentignes, texture, rhytides, and pores. These changes occur under the influence of intrinsic and extrinsic factors, as hormone alterations and exposure to ultraviolet light (UV) irradiation, respectively. Skin changes associated with aging have been assuming an important role in nowadays and bring to affect the quality of life. Intense Pulsed Light (ILP) is a noncollimated, polychromatic, and noncoherent non-surgical cosmetic therapy to skin rejuvenation. This is the first systematic review evaluating ILP treatment on skin rejuvenation evaluated by digital photographs and self-reported treatment efficacy. A PRISMA compliant review includes a search of the databases Scopus and PubMed. Sixteen studies treating 637 participants (with Fitzpatrick skin types I to IV and age varying from 21 to 80 years) were included. Patients were treated a mean of 4.29 sessions (range 3–7). The most studies results showed the efficacy of IPL treatment in telangiectasia, wrinkles, pore, erythema, rhytids, texture, lentigines, hiperpigmentation, and photoaging score. Six studies showed IPL-positive effects in association with other treatment and seven studies showed superior effect of other treatment or association to IPL with other treatment related to IPL alone. Nine studies showed low methodological quality. In conclusion, ILP treatment is effective on skin rejuvenation. However, there is no consensus about the parameters and future studies are needed to sample size limitations, made RCTs with low risk of bias, and improve the methodological quality its. Trial registration: Prospero Systematic Review Registration ID: CRD42021237817.

Research paper thumbnail of Effects of photobiomodulation on glucose homeostasis and morphometric parameters in pancreatic islets of diabetic mice

Lasers in Medical Science, 2021

High-fat diets lead to accumulation of body fat that is associated with the onset of insulin resi... more High-fat diets lead to accumulation of body fat that is associated with the onset of insulin resistance and type II diabetes mellitus. On the other hand, photobiomodulation (PBM) is an electrophysical resource that interacts with cells, stimulating mitochondrial respiration, increasing ATP production, reducing key inflammatory mediators, inhibiting apoptosis, and stimulating angiogenesis. However, little is known about its therapeutic effectiveness on the development of diabetes in diet-induced obese mice. Thus, our aim was to evaluate the effect of PBM applied single point over the pancreas area on glucose homeostasis, insulin expression, and pancreatic morphometric parameters of mice submitted to high-fat diet for 12 weeks. Male mice C57BL6/J were divided into three groups: control group (C), diabetic group (D), and diabetic + PBM (D + PBM). The treatment with PBM started at 9th week and ended in the 12th week, applied 3 × /week. Body mass, fast blood glucose, and glucose and insulin tolerance were evaluated. Immunohistochemistry to detect insulin expression and pancreatic morphometry were also performed. At the end of 12th week, both groups submitted to high-fat diet showed an increase in body mass, adiposity, disturbances on glucose homeostasis, and high insulin expression when compared to the control group. However, mice treated with PBM had more discrete impairments on glucose homeostasis during the glucose tolerance test when compared to untreated D animals. Despite modest, the results were positive and encourage future investigations to explore different doses and duration of PBM to better elucidate its role in obesity-associated type 2 diabetes development.

Research paper thumbnail of Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study

Journal of Biomaterials Applications, 2020

Biomaterials and bone grafts, with the ability of stimulating tissue growth and bone consolidatio... more Biomaterials and bone grafts, with the ability of stimulating tissue growth and bone consolidation, have been emerging as very promising strategies to treat bone fractures. Despite its well-known positive effects of biosilicate (BS) on osteogenesis, its use as bone grafts in critical situations such as bone defects of high dimensions or in non-consolidated fractures may not be sufficient to stimulate tissue repair. Consequently, several approaches have been explored to improve the bioactivity of BS. A promising strategy to reach this aim is the inclusion of an organic part, such as collagen, in order to mimic bone structure. Thus, the present study investigated the biological effects of marine spongin (SPG)-enriched BS composites on the process of healing, using a critical experimental model of cranial bone defect in rats. Histopathological and immunohistochemistry analyzes were performed after two and six weeks of implantation to investigate the effects of the material on bone repa...

Research paper thumbnail of Evaluation of the In Vivo Biological Effects of Marine Collagen and Hydroxyapatite Composite in a Tibial Bone Defect Model in Rats

Marine Biotechnology, 2020

One of the most promising strategies to improve the biological performance of bone grafts is the ... more One of the most promising strategies to improve the biological performance of bone grafts is the combination of different biomaterials. In this context, the aim of this study was to evaluate the effects of the incorporation of marine spongin (SPG) into Hydroxyapatite (HA) for bone tissue engineering proposals. The hypothesis of the current study is that SPG into HA would improve the biocompatibility of material and would have a positive stimulus into bone formation. Thus, HA and HA/SPG materials were produced and scanning electron microscopy (SEM) analysis was performed to characterize the samples. Also, in order to evaluate the in vivo tissue response, samples were implanted into a tibial bone defect in rats. Histopathological, immunohistochemistry, and biomechanical analyses were performed after 2 and 6 weeks of implantation to investigate the effects of the material on bone repair. The histological analysis demonstrated that composite presented an accelerated material degradation and enhanced newly bone formation. Additionally, histomorphometry analysis showed higher values of %BV/TV and N.Ob/T.Ar for HA/SPG. Runx-2 immunolabeling was higher for the composite group and no difference was found for VEGF. Moreover, the biomechanical analysis demonstrated similar values for all groups. These results indicated the potential of SPG to be used as an additive to HA to improve the biological performance for bone regeneration applications. However, further longterm studies should be carried out to provide additional information regarding the material degradation and bone regeneration.

Research paper thumbnail of Characterization and Biological Performance of Marine Sponge Collagen

Brazilian Archives of Biology and Technology, 2021

Research paper thumbnail of Characterization and Cytotoxicity Evaluation of a Marine Sponge Biosilica

Marine Biotechnology, 2018

The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when th... more The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1 H and 13 C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs.

Research paper thumbnail of In Vivo Biological Effects of Marine Biosilica on a Tibial Bone Defect in Rats

Brazilian Archives of Biology and Technology, 2020