Max Gassmann - Academia.edu (original) (raw)

Papers by Max Gassmann

Research paper thumbnail of Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration

The Journal of …, 2004

Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of rec... more Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the ...

Research paper thumbnail of Erythropoietin treatment leads to reduced blood glucose levels and body mass: insights from murine models

Journal of Endocrinology, 2010

Erythropoietin (EPO) regulates proliferation and differentiation of erythroid precursor cells int... more Erythropoietin (EPO) regulates proliferation and differentiation of erythroid precursor cells into erythrocytes. The last decade has revealed non-renal sites of EPO production and extrahematopoietic expression of the EPO receptor, thus suggesting that EPO has pleiotropic functions. Here, we addressed the interplay between EPO/glucose metabolism/ body weight by employing a panel of relevant experimental murine models. The models focused on situations of increased EPO levels, including EPO-injected C57BL/6 and BALB/c mice, as well as transgenic mice (tg6) constitutively overexpressing human EPO, thus exposed to constantly high EPO serum levels. As experimental models for diabetes and obesity, we employed protein Tyr phosphatase 1B (PTP1B) knockout mice associated with resistance to diabetes (PTP1B K/K), and ob/ob mice susceptible to diabetes and obesity. The data presented herein demonstrate EPOmediated decrease in blood glucose levels in all mice models tested. Moreover, in the ob/ob mice, we observed EPOmediated attenuation of body weight gain and reduction of hemoglobin A1c. Taken together, our data bear significant clinical implications of EPO treatment in the management of a wide range of metabolic diseases, thus adding an important novel therapeutic potential to this pleiotropic hormone.

Research paper thumbnail of Standardized Technique of Aortic Valve Re-implantation for Valve-sparing Aortic Root Replacement

Journal of visualized experiments : JoVE, Dec 11, 2017

Despite the obvious advantages of the preservation of a normal aortic valve during aortic root re... more Despite the obvious advantages of the preservation of a normal aortic valve during aortic root replacement, the complexity of valve sparing procedures prevents a number of cardiac surgeons from incorporating them into their practice. The aim of this protocol is to describe a simplified and user-friendly technique of an aortic valve-sparing root replacement (VSRR) procedure by re-implantation of the aortic valve. Proper selection of patients and limitations of the technique are discussed. In 54 consecutive patients, normal appearing aortic valves were re-implanted in a commercially available polyester prosthesis with pre-shaped sinuses by a simplified and standardized technique. Placement of the first row of the proximal suture line, choice of the prosthesis size, and adjustment of the height of the commissures of the patient to the fixed height of the sinus portion of the prosthesis were slightly modified from the reference techniques with the aim of increasing its feasibility for u...

Research paper thumbnail of Biological aortic valve replacement: advantages and optimal indications of stentless compared to stented valve substitutes. A review

General thoracic and cardiovascular surgery, Jan 10, 2018

Controversy still surrounds the optimal biological valve substitute for aortic valve replacement.... more Controversy still surrounds the optimal biological valve substitute for aortic valve replacement. In light of the current literature, we review advantages and optimal indications of stentless compared to stented aortic bio-prostheses. Recent meta-analyses, prospective randomized controlled trials and retrospective studies comparing the most frequently used stentless and stented aortic bio-prostheses were analyzed. In the present review, the types and implantation techniques of the bio-prosthesis that are seldom taken into account by most studies and reviews were integrated in the interpretation of the relevant reports. For stentless aortic root bio-prostheses, full-root vs. sub-coronary implantation offered better early transvalvular gradients, effective orifice area and left ventricular mass regression as well as late freedom from structural valve deterioration in retrospective studies. Early mortality and morbidity did not differ between the stentless and stented aortic bio-prosth...

Research paper thumbnail of Regular endurance training reduces the exercise induced HIF-1a and HIF-2a mRNA expression in human skeletal muscle in normoxic conditions

Eur J Appl Physiol, 2006

Regular exercise induces a variety of adaptive responses that enhance the oxidative and metabolic... more Regular exercise induces a variety of adaptive responses that enhance the oxidative and metabolic capacity of human skeletal muscle. Although the physiological adjustments of regular exercise have been known for decades, the underlying mechanisms are still unclear. The hypoxia inducible factors 1 and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended alpha-subunit and a constitutive beta-subunit. With hypoxic exposure, HIF-1alpha and HIF-2alpha protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1alpha and HIF-2alpha subunits increases with a single exercise bout, and that this response is blunted with training. We obtained muscle biopsies from a trained (5 days/week during 4 weeks) and untrained leg from the same human subject before, immediately after, and during the recovery from a 3 h two-legged knee extensor exercise bout, where the two legs exercised at the same absolute workload. In the untrained leg, the exercise bout induced an increase (P<0.05) in HIF-1alpha fold and HIF-2alpha fold mRNA at 6 h of recovery. In contrast, HIF-1alpha and HIF-2alpha mRNA levels were not altered at any time point in the trained leg. Obviously, HIF-1alpha and HIF-2alpha mRNA levels are transiently increased in untrained human skeletal muscle in response to an acute exercise bout, but this response is blunted after exercise training. We propose that HIFs expression is upregulated with exercise and that it may be an important transcription factor that regulates adaptive gene responses to exercise.

Research paper thumbnail of Constitutive upregulation of hypoxia-inducible factor-1α mRNA occurring in highly metastatic lung carcinoma cells leads to vascular endothelial growth factor overexpression upon hypoxic exposure

Oncogene, 2003

Neoangiogenesis is crucial for tumor growth and metastasis and is regulated by various angiogenic... more Neoangiogenesis is crucial for tumor growth and metastasis and is regulated by various angiogenic factors including vascular endothelial growth factor (VEGF). However, little is known whether highly metastatic cells express higher level of VEGF in response to various stimuli, thereby increasing neoangiogenesis compared to low-metastatic cells. Here we report that hypoxia markedly induced the expression of VEGF mRNA in the cell lines with high-metastatic potential (A11 and D6 cells) compared to the cell lines with low-metastatic potential (P29 and P34 cells) established from Lewis lung carcinoma. A11 cells exhibited higher VEGF genepromoter activity, produced a larger amount of VEGF and showed higher activity to induce neoangiogenesis than P29 cells. Although the degradation rate of VEGF mRNA under hypoxic conditions was similar in both cell lines, hypoxia-inducible factor-1a (HIF-1a) mRNA, but not HIF-1b mRNA, was found to be constitutively upregulated in A11 cells compared to P29 cells. Accordingly, the level of HIF-1a protein in response to hypoxia was higher in A11 cells than in P29 cells. Upregulation of HIF-1a mRNA was also observed in D6 cells but not in P34 cells. Thus, the high-metastatic cells produced a larger amount of VEGF under hypoxic conditions through constitutive HIF-1a mRNA upregulation compared to the low-metastatic cells, thereby leading to extensive neoangiogenesis.

Research paper thumbnail of Molecular Biology of Hypoxia-Inducible Factor-1

Molecular Biology of Hematopoiesis 6, 1999

Research paper thumbnail of Blood viscosity limits maximal exercise performance in mice

Vascular Pharmacology, 2012

Research paper thumbnail of Supplementary Materials revised 2 redlined

Research paper thumbnail of Erythropoietin directly stimulates osteoclast precursors and induces bone loss

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, Jan 28, 2015

Erythropoietin (EPO) primarily regulates red blood cell formation, and EPO serum levels are incre... more Erythropoietin (EPO) primarily regulates red blood cell formation, and EPO serum levels are increased on hypoxic stress (e.g., anemia and altitude). In addition to anemia, recent discoveries suggest new therapeutic indications for EPO, unrelated to erythropoiesis. We investigated the skeletal role of EPO using several models of overexpression (Tg6 mice) and EPO administration (intermittent/continuous, high/low doses) in adult C57Bl6 female mice. Using microcomputed tomography, histology, and serum markers, we found that EPO induced a 32%-61% trabecular bone loss caused by increased bone resorption (+60%-88% osteoclast number) and reduced bone formation rate (-19 to -74%; P < 0.05 throughout). EPO targeted the monocytic lineage by increasing the number of bone monocytes/macrophages, preosteoclasts, and mature osteoclasts. In contrast to the attenuated bone formation in vivo, EPO treatment in vitro did not inhibit osteoblast differentiation and activity, suggesting an indirect effe...

Research paper thumbnail of The Effects of Short-Term and Long-Term Testosterone Supplementation on Blood Viscosity and Erythrocyte Deformability in Healthy Adult Mice

Endocrinology, 2015

Testosterone treatment induces erythrocytosis that could potentially affect blood viscosity and c... more Testosterone treatment induces erythrocytosis that could potentially affect blood viscosity and cardiovascular risk. We thus investigated the effects of testosterone administration on blood viscosity and erythrocyte deformability using mouse models. Blood viscosity, erythrocyte deformability, and hematocrits were measured in normal male and female mice, as well as in females and castrated males after short-term (2-weeks) and long-term (5-7 months) testosterone intervention (50 mg/kg, weekly). Castrated males for long-term intervention were studied in parallel with the normal males to assess the effect of long-term testosterone deprivation. An additional short-term intervention study was conducted in females with a lower testosterone dose (5 mg/kg). Our results indicate no rheological difference among normal males, females, and castrated males at steady-state. Short-term high dose testosterone increased hematocrit and whole blood viscosity in both females and castrated males. This effect diminished after long-term treatment, in association with increased erythrocyte deformability in the testosterone-treated mice, suggesting the presence of adaptive mechanism. Considering that cardiovascular events in human trials are seen early after intervention, rheological changes as potential mediator of vascular events warrant further investigation.

Research paper thumbnail of Combination of erythropoietin and sildenafil can effectively attenuate hypoxia-induced pulmonary hypertension in mice

Pulmonary Circulation, 2013

Pulmonary hypertension (PH) is an incurable disease that often leads to right ventricular hypertr... more Pulmonary hypertension (PH) is an incurable disease that often leads to right ventricular hypertrophy and right heart failure. This study investigated single versus combined therapy with sildenafil and erythropoietin on hypoxia-induced pulmonary hypertension in mice. Mice were randomized into 5 groups and exposed to either hypoxia (10% oxygen) or normoxia for a total of 5 weeks. Hypoxic mice were treated with saline solution, erythropoietin (500 IU/kg 3 times weekly), sildenafil (10 mg/kg daily), or a combination of the two drugs for the last 2 weeks of hypoxic exposure. We measured right ventricular pressures using right heart catheterization, and the ventilatory response to hypoxia was recorded via whole-body plethysmography. Histological analyses were performed to elucidate changes in pulmonary morphology and appearance of right heart hypertrophy. Plasma levels of cardiotrophin-1 and atrial natriuretic peptide were quantified. Treatment with either erythropoietin or sildenafil alone lowered the hypoxia-induced increase of pulmonary pressure and reduced pulmonary edema formation, pulmonary vascular remodeling, and right ventricular hypertrophy. Notably, the combination of the two drugs had the most prominent effect. Changes in cardiotrophin-1 and atrial natriuretic protein levels confirmed these observations. The combination treatment with erythropoietin and sildenafil demonstrated an attenuation of the development of hypoxia-induced PH in mice that was superior to that observed for either drug when given alone.

Research paper thumbnail of Arginine-vasopressin marker copeptin is a sensitive plasma surrogate of hypoxic exposure

Hypoxia, 2014

Background: A reduced oxygen supply puts patients at risk of tissue hypoxia, organ damage, and ev... more Background: A reduced oxygen supply puts patients at risk of tissue hypoxia, organ damage, and even death. In response, several changes are activated that allow for at least partial adaptation, thereby increasing the chances of survival. We aimed to investigate whether the arginine vasopressin marker, copeptin, can be used as a marker of the degree of acclimatization/adaptation in rats exposed to hypoxia. Methods: Sprague-Dawley rats were exposed to 10% oxygen for up to 48 hours. Arterial and right ventricular pressures were measured, and blood gas analysis was performed at set time points. Pulmonary changes were investigated by bronchoalveolar lavage, wet and dry weight measurements, and lung histology. Using a newly developed specific rat copeptin luminescence immunoassay, the regulation of vasopressin in response to hypoxia was studied, as was atrial natriuretic peptide (ANP) by detecting mid-regional proANP. Results: With a decreasing oxygen supply, the rats rapidly became cyanotic and inactive. Despite continued exposure to 10% oxygen, all animals recuperated within 16 hours and ultimately survived. Their systemic blood pressure fell with acute (5 minutes) hypoxia but was partially recovered over time. In contrast, right ventricular pressures increased with acute (5 minutes) hypoxia and normalized after 16 hours. No signs of pulmonary inflammation or edema were found despite prolonged hypoxia. Whereas copeptin levels increased significantly after acute (5 minutes) hypoxia and then returned to near baseline after 16 hours, mid-regional proANP levels were even further increased after 16 hours of exposure to hypoxia. Conclusion: Plasma copeptin is a sensitive marker of acute (5 minutes) exposure to severe hypoxia, and subsequent regulation can indicate recovery. Copeptin levels can therefore reflect clinical and physiological changes in response to hypoxia and indicate recovery from ongoing hypoxic exposure.

Research paper thumbnail of Novel antibodies directed against the human erythropoietin receptor: creating a basis for clinical implementation

British journal of haematology, 2015

Recombinant human erythropoietin (rHuEPO) is an effective treatment for anaemia but concerns that... more Recombinant human erythropoietin (rHuEPO) is an effective treatment for anaemia but concerns that it causes disease progression in cancer patients by activation of EPO receptors (EPOR) in tumour tissue have been controversial and have restricted its clinical use. Initial clinical studies were flawed because they used polyclonal antibodies, later shown to lack specificity for EPOR. Moreover, multiple isoforms of EPOR caused by differential splicing have been reported in cancer cell lines at the mRNA level but investigations of these variants and their potential impact on tumour progression, have been hampered by lack of suitable antibodies. The EpoCan consortium seeks to promote improved pathological testing of EPOR, leading to safer clinical use of rHuEPO, by producing well characterized EPOR antibodies. Using novel genetic and traditional peptide immunization protocols, we have produced mouse and rat monoclonal antibodies, and show that several of these specifically recognize EPOR ...

Research paper thumbnail of Mammalian gene expression in hypoxic conditions

Zoology, 2001

Hypoxia induces gene expression of specific genes such as erythropoietin (Epo) and vascular endot... more Hypoxia induces gene expression of specific genes such as erythropoietin (Epo) and vascular endothelial growth factor (VEGF) that allow physiological adaptation to the environmental conditions at the cellular, local, and systemic levels. Reduced oxygenation is also a common precursor of many pathological processes, including coronary artery defects, ischemia, and malignant tumour formation. The hypoxia-inducible transcription factor HIF-1, a heterodimer consisting of the oxygen-regulated alpha-subunit and the constitutively expressed beta or ARNT-subunit, serves as a master regulator of oxygen-dependent gene expression. We observed that upon hypoxic exposure of HeLa cells in tonometer, accumulation of HIF-1alpha occurred within two minutes, while reoxygenation strongly reduced HIF-1alpha levels within four to eight minutes. Thus, hypoxia leads to a rapid cellular adaptation. In another line of investigation, we analysed the impact of hypoxia-independent overexpression of Epo in transgenic mice. Despite a hematocrit of about 80% the transgenic mice did not develop hypertension or thromboembolic complications.

Research paper thumbnail of Mitochondria contaminate databases

Research paper thumbnail of Excessive erythrocytosis compromises the blood-endothelium interface in erythropoietin-overexpressing mice

The Journal of Physiology, 2011

Non-technical summary Elevated systemic haematocrit (Hct) increases cardiovascular risk, such as ... more Non-technical summary Elevated systemic haematocrit (Hct) increases cardiovascular risk, such as stroke and myocardial infarction. One possible pathophysiological mechanism could be a disturbance of the blood-endothelium interface. It has been shown that blood interacts with the endothelial surface via a gel-like layer (the 'glycocalyx' , or 'endothelial surface layer'-ESL) that modulates various biological processes, including inflammation, permeability and atherosclerosis. However, the consequences of an elevated Hct on the functional properties of this interface are incompletely understood. In a transgenic mouse (tg6) model exhibiting systemic Hct levels of about 0.85 the glycocalyx/ESL was nearly abolished. The corresponding increase in vessel diameter had only minor effects on peripheral flow resistance. This suggests that the pathological effects of elevated Hct may relate more strongly to the biological corollaries of a reduced ESL thickness and alterations of the blood-endothelium interface than to an increased flow resistance.

Research paper thumbnail of Soluble erythropoietin receptor is present in the mouse brain and is required for the ventilatory acclimatization to hypoxia

The Journal of Physiology, 2007

While erythropoietin (Epo) and its receptor (EpoR) have been widely investigated in brain, the ex... more While erythropoietin (Epo) and its receptor (EpoR) have been widely investigated in brain, the expression and function of the soluble Epo receptor (sEpoR) remain unknown. Here we demonstrate that sEpoR, a negative regulator of Epo's binding to the EpoR, is present in the mouse brain and is down-regulated by 62% after exposure to normobaric chronic hypoxia (10% O 2 for 3 days). Furthermore, while normoxic minute ventilation increased by 58% in control mice following hypoxic acclimatization, sEpoR infusion in brain during the hypoxic challenge efficiently reduced brain Epo concentration and abolished the ventilatory acclimatization to hypoxia (VAH). These observations imply that hypoxic downregulation of sEpoR is required for adequate ventilatory acclimatization to hypoxia, thereby underlying the function of Epo as a key factor regulating oxygen delivery not only by its classical activity on red blood cell production, but also by regulating ventilation.

Research paper thumbnail of Erythropoietin-induced excessive erythrocytosis activates the tissue endothelin system in mice

The FASEB Journal, 2002

The endothelium controls blood flow and pressure by releasing several vasoactive factors, among t... more The endothelium controls blood flow and pressure by releasing several vasoactive factors, among them the vasodilator nitric oxide (NO) and the potent vasoconstrictor endothelin-1 (ET-1). Although increased NO levels have been found in excessive erythrocytosis, little is known concerning ET-1 expression in this condition. Thus, we examined the endothelin system in transgenic mice that due to constitutive overexpression of erythropoietin (Epo) reached hematocrit levels of approximately 80%. Surprisingly, despite generalized vasodilatation, polycythemic mice exhibited a two- to fivefold elevation in ET-1 mRNA levels in aorta, liver, heart, and kidney. In line with this, increased expression of ET-1 protein was detected in the pulmonary artery by immunohistochemical analysis. Compared with their wild-type littermates, aortic rings of Epo transgenic animals exhibited a marked reduction in vascular reactivity to ET-1 and big ET-1, but this effect was abrogated upon preincubation with the NO synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME). Pretreatment of polycythemic mice with the ET(A) receptor antagonist darusentan for 3 wk significantly prolonged their survival upon acute exposure to L-NAME. Taken together, these results demonstrate for the first time that excessive erythrocytosis induces a marked activation of the tissue endothelin system that results in increased mortality upon blockade of NO-mediated vasodilatation. Because ETA antagonism prolonged survival after acute blockade of NO synthesis, endothelin may be regarded as a contributor to the adverse cardiovascular effects of erythrocytosis and may thus represent a new target in the treatment of cardiovascular disease associated with erythrocytosis.

Research paper thumbnail of Erythropoietin protects from axotomy-induced degeneration of retinal ganglion cells by activating ERK-1/-2

The FASEB Journal, 2004

Apart from its hematopoietic function, erythropoietin (Epo) exerts neuroprotective activity upon ... more Apart from its hematopoietic function, erythropoietin (Epo) exerts neuroprotective activity upon reduced oxygenation or ischemia of brain, retina, and spinal cord. To examine whether Epo has an impact on the retrograde degeneration of retinal ganglion cells (RGCs) following optic nerve transection in vivo, we made use of our transgenic mouse line tg21 that constitutively expresses human Epo preferentially in neuronal cells without inducing polycythemia. We show that the tg21 retina expresses human Epo and that RGCs in this mouse line carry the Epo receptor. Upon axotomy, the RGCs of Epo transgenic tg21 mice were protected against degeneration, as compared with wild-type control animals. Western blot analysis revealed decreased phosphorylation levels of STAT-5 and reduced expression of Bcl-X L in RGCs of axotomized tg21 animals, suggesting that the corresponding pathways are not crucial for Epo's neuroprotective activity. Increased phosphorylation levels of ERK-1/-2 and Akt, as well as decreased caspase-3 activity, however, were observed in injured tg21 retinae. Injection of selective inhibitors of ERK-1/-2 (PD98059) or Akt (Wortmannin) pathways into the vitreous space revealed that transgenic Epo protected the RGCs by a pathway involving ERK-1/-2 but not Akt. In view that axotomy-induced degeneration of RGC occurs slowly, and considering the earlier data on the safety and efficacy of Epo in human stroke patients, we predict the clinical implementation of recombinant human Epo not only in patients with acute ischemic stroke, but also with more delayed degenerative neurological diseases.

Research paper thumbnail of Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration

The Journal of …, 2004

Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of rec... more Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the ...

Research paper thumbnail of Erythropoietin treatment leads to reduced blood glucose levels and body mass: insights from murine models

Journal of Endocrinology, 2010

Erythropoietin (EPO) regulates proliferation and differentiation of erythroid precursor cells int... more Erythropoietin (EPO) regulates proliferation and differentiation of erythroid precursor cells into erythrocytes. The last decade has revealed non-renal sites of EPO production and extrahematopoietic expression of the EPO receptor, thus suggesting that EPO has pleiotropic functions. Here, we addressed the interplay between EPO/glucose metabolism/ body weight by employing a panel of relevant experimental murine models. The models focused on situations of increased EPO levels, including EPO-injected C57BL/6 and BALB/c mice, as well as transgenic mice (tg6) constitutively overexpressing human EPO, thus exposed to constantly high EPO serum levels. As experimental models for diabetes and obesity, we employed protein Tyr phosphatase 1B (PTP1B) knockout mice associated with resistance to diabetes (PTP1B K/K), and ob/ob mice susceptible to diabetes and obesity. The data presented herein demonstrate EPOmediated decrease in blood glucose levels in all mice models tested. Moreover, in the ob/ob mice, we observed EPOmediated attenuation of body weight gain and reduction of hemoglobin A1c. Taken together, our data bear significant clinical implications of EPO treatment in the management of a wide range of metabolic diseases, thus adding an important novel therapeutic potential to this pleiotropic hormone.

Research paper thumbnail of Standardized Technique of Aortic Valve Re-implantation for Valve-sparing Aortic Root Replacement

Journal of visualized experiments : JoVE, Dec 11, 2017

Despite the obvious advantages of the preservation of a normal aortic valve during aortic root re... more Despite the obvious advantages of the preservation of a normal aortic valve during aortic root replacement, the complexity of valve sparing procedures prevents a number of cardiac surgeons from incorporating them into their practice. The aim of this protocol is to describe a simplified and user-friendly technique of an aortic valve-sparing root replacement (VSRR) procedure by re-implantation of the aortic valve. Proper selection of patients and limitations of the technique are discussed. In 54 consecutive patients, normal appearing aortic valves were re-implanted in a commercially available polyester prosthesis with pre-shaped sinuses by a simplified and standardized technique. Placement of the first row of the proximal suture line, choice of the prosthesis size, and adjustment of the height of the commissures of the patient to the fixed height of the sinus portion of the prosthesis were slightly modified from the reference techniques with the aim of increasing its feasibility for u...

Research paper thumbnail of Biological aortic valve replacement: advantages and optimal indications of stentless compared to stented valve substitutes. A review

General thoracic and cardiovascular surgery, Jan 10, 2018

Controversy still surrounds the optimal biological valve substitute for aortic valve replacement.... more Controversy still surrounds the optimal biological valve substitute for aortic valve replacement. In light of the current literature, we review advantages and optimal indications of stentless compared to stented aortic bio-prostheses. Recent meta-analyses, prospective randomized controlled trials and retrospective studies comparing the most frequently used stentless and stented aortic bio-prostheses were analyzed. In the present review, the types and implantation techniques of the bio-prosthesis that are seldom taken into account by most studies and reviews were integrated in the interpretation of the relevant reports. For stentless aortic root bio-prostheses, full-root vs. sub-coronary implantation offered better early transvalvular gradients, effective orifice area and left ventricular mass regression as well as late freedom from structural valve deterioration in retrospective studies. Early mortality and morbidity did not differ between the stentless and stented aortic bio-prosth...

Research paper thumbnail of Regular endurance training reduces the exercise induced HIF-1a and HIF-2a mRNA expression in human skeletal muscle in normoxic conditions

Eur J Appl Physiol, 2006

Regular exercise induces a variety of adaptive responses that enhance the oxidative and metabolic... more Regular exercise induces a variety of adaptive responses that enhance the oxidative and metabolic capacity of human skeletal muscle. Although the physiological adjustments of regular exercise have been known for decades, the underlying mechanisms are still unclear. The hypoxia inducible factors 1 and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended alpha-subunit and a constitutive beta-subunit. With hypoxic exposure, HIF-1alpha and HIF-2alpha protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1alpha and HIF-2alpha subunits increases with a single exercise bout, and that this response is blunted with training. We obtained muscle biopsies from a trained (5 days/week during 4 weeks) and untrained leg from the same human subject before, immediately after, and during the recovery from a 3 h two-legged knee extensor exercise bout, where the two legs exercised at the same absolute workload. In the untrained leg, the exercise bout induced an increase (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05) in HIF-1alpha fold and HIF-2alpha fold mRNA at 6 h of recovery. In contrast, HIF-1alpha and HIF-2alpha mRNA levels were not altered at any time point in the trained leg. Obviously, HIF-1alpha and HIF-2alpha mRNA levels are transiently increased in untrained human skeletal muscle in response to an acute exercise bout, but this response is blunted after exercise training. We propose that HIFs expression is upregulated with exercise and that it may be an important transcription factor that regulates adaptive gene responses to exercise.

Research paper thumbnail of Constitutive upregulation of hypoxia-inducible factor-1α mRNA occurring in highly metastatic lung carcinoma cells leads to vascular endothelial growth factor overexpression upon hypoxic exposure

Oncogene, 2003

Neoangiogenesis is crucial for tumor growth and metastasis and is regulated by various angiogenic... more Neoangiogenesis is crucial for tumor growth and metastasis and is regulated by various angiogenic factors including vascular endothelial growth factor (VEGF). However, little is known whether highly metastatic cells express higher level of VEGF in response to various stimuli, thereby increasing neoangiogenesis compared to low-metastatic cells. Here we report that hypoxia markedly induced the expression of VEGF mRNA in the cell lines with high-metastatic potential (A11 and D6 cells) compared to the cell lines with low-metastatic potential (P29 and P34 cells) established from Lewis lung carcinoma. A11 cells exhibited higher VEGF genepromoter activity, produced a larger amount of VEGF and showed higher activity to induce neoangiogenesis than P29 cells. Although the degradation rate of VEGF mRNA under hypoxic conditions was similar in both cell lines, hypoxia-inducible factor-1a (HIF-1a) mRNA, but not HIF-1b mRNA, was found to be constitutively upregulated in A11 cells compared to P29 cells. Accordingly, the level of HIF-1a protein in response to hypoxia was higher in A11 cells than in P29 cells. Upregulation of HIF-1a mRNA was also observed in D6 cells but not in P34 cells. Thus, the high-metastatic cells produced a larger amount of VEGF under hypoxic conditions through constitutive HIF-1a mRNA upregulation compared to the low-metastatic cells, thereby leading to extensive neoangiogenesis.

Research paper thumbnail of Molecular Biology of Hypoxia-Inducible Factor-1

Molecular Biology of Hematopoiesis 6, 1999

Research paper thumbnail of Blood viscosity limits maximal exercise performance in mice

Vascular Pharmacology, 2012

Research paper thumbnail of Supplementary Materials revised 2 redlined

Research paper thumbnail of Erythropoietin directly stimulates osteoclast precursors and induces bone loss

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, Jan 28, 2015

Erythropoietin (EPO) primarily regulates red blood cell formation, and EPO serum levels are incre... more Erythropoietin (EPO) primarily regulates red blood cell formation, and EPO serum levels are increased on hypoxic stress (e.g., anemia and altitude). In addition to anemia, recent discoveries suggest new therapeutic indications for EPO, unrelated to erythropoiesis. We investigated the skeletal role of EPO using several models of overexpression (Tg6 mice) and EPO administration (intermittent/continuous, high/low doses) in adult C57Bl6 female mice. Using microcomputed tomography, histology, and serum markers, we found that EPO induced a 32%-61% trabecular bone loss caused by increased bone resorption (+60%-88% osteoclast number) and reduced bone formation rate (-19 to -74%; P < 0.05 throughout). EPO targeted the monocytic lineage by increasing the number of bone monocytes/macrophages, preosteoclasts, and mature osteoclasts. In contrast to the attenuated bone formation in vivo, EPO treatment in vitro did not inhibit osteoblast differentiation and activity, suggesting an indirect effe...

Research paper thumbnail of The Effects of Short-Term and Long-Term Testosterone Supplementation on Blood Viscosity and Erythrocyte Deformability in Healthy Adult Mice

Endocrinology, 2015

Testosterone treatment induces erythrocytosis that could potentially affect blood viscosity and c... more Testosterone treatment induces erythrocytosis that could potentially affect blood viscosity and cardiovascular risk. We thus investigated the effects of testosterone administration on blood viscosity and erythrocyte deformability using mouse models. Blood viscosity, erythrocyte deformability, and hematocrits were measured in normal male and female mice, as well as in females and castrated males after short-term (2-weeks) and long-term (5-7 months) testosterone intervention (50 mg/kg, weekly). Castrated males for long-term intervention were studied in parallel with the normal males to assess the effect of long-term testosterone deprivation. An additional short-term intervention study was conducted in females with a lower testosterone dose (5 mg/kg). Our results indicate no rheological difference among normal males, females, and castrated males at steady-state. Short-term high dose testosterone increased hematocrit and whole blood viscosity in both females and castrated males. This effect diminished after long-term treatment, in association with increased erythrocyte deformability in the testosterone-treated mice, suggesting the presence of adaptive mechanism. Considering that cardiovascular events in human trials are seen early after intervention, rheological changes as potential mediator of vascular events warrant further investigation.

Research paper thumbnail of Combination of erythropoietin and sildenafil can effectively attenuate hypoxia-induced pulmonary hypertension in mice

Pulmonary Circulation, 2013

Pulmonary hypertension (PH) is an incurable disease that often leads to right ventricular hypertr... more Pulmonary hypertension (PH) is an incurable disease that often leads to right ventricular hypertrophy and right heart failure. This study investigated single versus combined therapy with sildenafil and erythropoietin on hypoxia-induced pulmonary hypertension in mice. Mice were randomized into 5 groups and exposed to either hypoxia (10% oxygen) or normoxia for a total of 5 weeks. Hypoxic mice were treated with saline solution, erythropoietin (500 IU/kg 3 times weekly), sildenafil (10 mg/kg daily), or a combination of the two drugs for the last 2 weeks of hypoxic exposure. We measured right ventricular pressures using right heart catheterization, and the ventilatory response to hypoxia was recorded via whole-body plethysmography. Histological analyses were performed to elucidate changes in pulmonary morphology and appearance of right heart hypertrophy. Plasma levels of cardiotrophin-1 and atrial natriuretic peptide were quantified. Treatment with either erythropoietin or sildenafil alone lowered the hypoxia-induced increase of pulmonary pressure and reduced pulmonary edema formation, pulmonary vascular remodeling, and right ventricular hypertrophy. Notably, the combination of the two drugs had the most prominent effect. Changes in cardiotrophin-1 and atrial natriuretic protein levels confirmed these observations. The combination treatment with erythropoietin and sildenafil demonstrated an attenuation of the development of hypoxia-induced PH in mice that was superior to that observed for either drug when given alone.

Research paper thumbnail of Arginine-vasopressin marker copeptin is a sensitive plasma surrogate of hypoxic exposure

Hypoxia, 2014

Background: A reduced oxygen supply puts patients at risk of tissue hypoxia, organ damage, and ev... more Background: A reduced oxygen supply puts patients at risk of tissue hypoxia, organ damage, and even death. In response, several changes are activated that allow for at least partial adaptation, thereby increasing the chances of survival. We aimed to investigate whether the arginine vasopressin marker, copeptin, can be used as a marker of the degree of acclimatization/adaptation in rats exposed to hypoxia. Methods: Sprague-Dawley rats were exposed to 10% oxygen for up to 48 hours. Arterial and right ventricular pressures were measured, and blood gas analysis was performed at set time points. Pulmonary changes were investigated by bronchoalveolar lavage, wet and dry weight measurements, and lung histology. Using a newly developed specific rat copeptin luminescence immunoassay, the regulation of vasopressin in response to hypoxia was studied, as was atrial natriuretic peptide (ANP) by detecting mid-regional proANP. Results: With a decreasing oxygen supply, the rats rapidly became cyanotic and inactive. Despite continued exposure to 10% oxygen, all animals recuperated within 16 hours and ultimately survived. Their systemic blood pressure fell with acute (5 minutes) hypoxia but was partially recovered over time. In contrast, right ventricular pressures increased with acute (5 minutes) hypoxia and normalized after 16 hours. No signs of pulmonary inflammation or edema were found despite prolonged hypoxia. Whereas copeptin levels increased significantly after acute (5 minutes) hypoxia and then returned to near baseline after 16 hours, mid-regional proANP levels were even further increased after 16 hours of exposure to hypoxia. Conclusion: Plasma copeptin is a sensitive marker of acute (5 minutes) exposure to severe hypoxia, and subsequent regulation can indicate recovery. Copeptin levels can therefore reflect clinical and physiological changes in response to hypoxia and indicate recovery from ongoing hypoxic exposure.

Research paper thumbnail of Novel antibodies directed against the human erythropoietin receptor: creating a basis for clinical implementation

British journal of haematology, 2015

Recombinant human erythropoietin (rHuEPO) is an effective treatment for anaemia but concerns that... more Recombinant human erythropoietin (rHuEPO) is an effective treatment for anaemia but concerns that it causes disease progression in cancer patients by activation of EPO receptors (EPOR) in tumour tissue have been controversial and have restricted its clinical use. Initial clinical studies were flawed because they used polyclonal antibodies, later shown to lack specificity for EPOR. Moreover, multiple isoforms of EPOR caused by differential splicing have been reported in cancer cell lines at the mRNA level but investigations of these variants and their potential impact on tumour progression, have been hampered by lack of suitable antibodies. The EpoCan consortium seeks to promote improved pathological testing of EPOR, leading to safer clinical use of rHuEPO, by producing well characterized EPOR antibodies. Using novel genetic and traditional peptide immunization protocols, we have produced mouse and rat monoclonal antibodies, and show that several of these specifically recognize EPOR ...

Research paper thumbnail of Mammalian gene expression in hypoxic conditions

Zoology, 2001

Hypoxia induces gene expression of specific genes such as erythropoietin (Epo) and vascular endot... more Hypoxia induces gene expression of specific genes such as erythropoietin (Epo) and vascular endothelial growth factor (VEGF) that allow physiological adaptation to the environmental conditions at the cellular, local, and systemic levels. Reduced oxygenation is also a common precursor of many pathological processes, including coronary artery defects, ischemia, and malignant tumour formation. The hypoxia-inducible transcription factor HIF-1, a heterodimer consisting of the oxygen-regulated alpha-subunit and the constitutively expressed beta or ARNT-subunit, serves as a master regulator of oxygen-dependent gene expression. We observed that upon hypoxic exposure of HeLa cells in tonometer, accumulation of HIF-1alpha occurred within two minutes, while reoxygenation strongly reduced HIF-1alpha levels within four to eight minutes. Thus, hypoxia leads to a rapid cellular adaptation. In another line of investigation, we analysed the impact of hypoxia-independent overexpression of Epo in transgenic mice. Despite a hematocrit of about 80% the transgenic mice did not develop hypertension or thromboembolic complications.

Research paper thumbnail of Mitochondria contaminate databases

Research paper thumbnail of Excessive erythrocytosis compromises the blood-endothelium interface in erythropoietin-overexpressing mice

The Journal of Physiology, 2011

Non-technical summary Elevated systemic haematocrit (Hct) increases cardiovascular risk, such as ... more Non-technical summary Elevated systemic haematocrit (Hct) increases cardiovascular risk, such as stroke and myocardial infarction. One possible pathophysiological mechanism could be a disturbance of the blood-endothelium interface. It has been shown that blood interacts with the endothelial surface via a gel-like layer (the 'glycocalyx' , or 'endothelial surface layer'-ESL) that modulates various biological processes, including inflammation, permeability and atherosclerosis. However, the consequences of an elevated Hct on the functional properties of this interface are incompletely understood. In a transgenic mouse (tg6) model exhibiting systemic Hct levels of about 0.85 the glycocalyx/ESL was nearly abolished. The corresponding increase in vessel diameter had only minor effects on peripheral flow resistance. This suggests that the pathological effects of elevated Hct may relate more strongly to the biological corollaries of a reduced ESL thickness and alterations of the blood-endothelium interface than to an increased flow resistance.

Research paper thumbnail of Soluble erythropoietin receptor is present in the mouse brain and is required for the ventilatory acclimatization to hypoxia

The Journal of Physiology, 2007

While erythropoietin (Epo) and its receptor (EpoR) have been widely investigated in brain, the ex... more While erythropoietin (Epo) and its receptor (EpoR) have been widely investigated in brain, the expression and function of the soluble Epo receptor (sEpoR) remain unknown. Here we demonstrate that sEpoR, a negative regulator of Epo's binding to the EpoR, is present in the mouse brain and is down-regulated by 62% after exposure to normobaric chronic hypoxia (10% O 2 for 3 days). Furthermore, while normoxic minute ventilation increased by 58% in control mice following hypoxic acclimatization, sEpoR infusion in brain during the hypoxic challenge efficiently reduced brain Epo concentration and abolished the ventilatory acclimatization to hypoxia (VAH). These observations imply that hypoxic downregulation of sEpoR is required for adequate ventilatory acclimatization to hypoxia, thereby underlying the function of Epo as a key factor regulating oxygen delivery not only by its classical activity on red blood cell production, but also by regulating ventilation.

Research paper thumbnail of Erythropoietin-induced excessive erythrocytosis activates the tissue endothelin system in mice

The FASEB Journal, 2002

The endothelium controls blood flow and pressure by releasing several vasoactive factors, among t... more The endothelium controls blood flow and pressure by releasing several vasoactive factors, among them the vasodilator nitric oxide (NO) and the potent vasoconstrictor endothelin-1 (ET-1). Although increased NO levels have been found in excessive erythrocytosis, little is known concerning ET-1 expression in this condition. Thus, we examined the endothelin system in transgenic mice that due to constitutive overexpression of erythropoietin (Epo) reached hematocrit levels of approximately 80%. Surprisingly, despite generalized vasodilatation, polycythemic mice exhibited a two- to fivefold elevation in ET-1 mRNA levels in aorta, liver, heart, and kidney. In line with this, increased expression of ET-1 protein was detected in the pulmonary artery by immunohistochemical analysis. Compared with their wild-type littermates, aortic rings of Epo transgenic animals exhibited a marked reduction in vascular reactivity to ET-1 and big ET-1, but this effect was abrogated upon preincubation with the NO synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME). Pretreatment of polycythemic mice with the ET(A) receptor antagonist darusentan for 3 wk significantly prolonged their survival upon acute exposure to L-NAME. Taken together, these results demonstrate for the first time that excessive erythrocytosis induces a marked activation of the tissue endothelin system that results in increased mortality upon blockade of NO-mediated vasodilatation. Because ETA antagonism prolonged survival after acute blockade of NO synthesis, endothelin may be regarded as a contributor to the adverse cardiovascular effects of erythrocytosis and may thus represent a new target in the treatment of cardiovascular disease associated with erythrocytosis.

Research paper thumbnail of Erythropoietin protects from axotomy-induced degeneration of retinal ganglion cells by activating ERK-1/-2

The FASEB Journal, 2004

Apart from its hematopoietic function, erythropoietin (Epo) exerts neuroprotective activity upon ... more Apart from its hematopoietic function, erythropoietin (Epo) exerts neuroprotective activity upon reduced oxygenation or ischemia of brain, retina, and spinal cord. To examine whether Epo has an impact on the retrograde degeneration of retinal ganglion cells (RGCs) following optic nerve transection in vivo, we made use of our transgenic mouse line tg21 that constitutively expresses human Epo preferentially in neuronal cells without inducing polycythemia. We show that the tg21 retina expresses human Epo and that RGCs in this mouse line carry the Epo receptor. Upon axotomy, the RGCs of Epo transgenic tg21 mice were protected against degeneration, as compared with wild-type control animals. Western blot analysis revealed decreased phosphorylation levels of STAT-5 and reduced expression of Bcl-X L in RGCs of axotomized tg21 animals, suggesting that the corresponding pathways are not crucial for Epo's neuroprotective activity. Increased phosphorylation levels of ERK-1/-2 and Akt, as well as decreased caspase-3 activity, however, were observed in injured tg21 retinae. Injection of selective inhibitors of ERK-1/-2 (PD98059) or Akt (Wortmannin) pathways into the vitreous space revealed that transgenic Epo protected the RGCs by a pathway involving ERK-1/-2 but not Akt. In view that axotomy-induced degeneration of RGC occurs slowly, and considering the earlier data on the safety and efficacy of Epo in human stroke patients, we predict the clinical implementation of recombinant human Epo not only in patients with acute ischemic stroke, but also with more delayed degenerative neurological diseases.