Michael Bereman - Academia.edu (original) (raw)

Papers by Michael Bereman

Research paper thumbnail of Tutorial Workshop Session Abstracts

Research paper thumbnail of Toxicoproteomic analysis of pulmonary carbon nanotube exposure using LC-MS/MS

Toxicology, 2015

Toxicoproteomics is a developing field that utilizes global proteomic methodologies to investigat... more Toxicoproteomics is a developing field that utilizes global proteomic methodologies to investigate the physiological response as a result of adverse toxicant exposure. The aim of this study was to compare the protein secretion profile in lung bronchoalveolar lavage fluid (BALF) from mice exposed to non-functionalized multi-walled carbon nanotubes (U-MWCNTs) or MWCNTs functionalized by nanoscale Al2O3 coatings (A-MWCNT) formed using atomic layer deposition (ALD). Proteins were identified using liquid chromatography tandem mass spectrometry (LC-MS/MS), and quantified using a combination of two label-free proteomic methods: spectral counting and MS1 peak area analysis. On average 465 protein groups were identified per sample and proteins were first screened using spectral counting and the Fisher's exact test to determine differentially regulated species. Significant proteins by Fisher's exact test (p<0.05) were then verified by integrating the intensity under the extracted ion chromatogram from a single unique peptide for each protein across all runs. A two sample t-test based on integrated peak intensities discovered differences in 27 proteins for control versus U-MWCNT, 13 proteins for control versus A-MWCNT, and 2 proteins for U-MWCNT versus A-MWCNT. Finally, an in-vitro binding experiment was performed yielding 4 common proteins statistically different (p<0.05) for both the in-vitro and in-vivo study. Several of the proteins found to be significantly different between exposed and control groups are known to play a key role in inflammatory and immune response. A comparison between the in-vitro and in-vivo CNT exposure emphasized a true biological response to CNT exposure.

Research paper thumbnail of N-Linked Global Glycan Profiling by NanoLC Mass Spectrometry

Methods in Molecular Biology, 2011

A method is detailed for the global profiling of underivatized N-linked glycans that are derived ... more A method is detailed for the global profiling of underivatized N-linked glycans that are derived from complex protein mixtures. The method consists of five main steps that include the following: (1) protein denaturation; (2) enzymatic digestion; (3) solid phase extraction; (4) nanoLC MS analysis; and (5) data interpretation. Materials, methods, and algorithms for the identification of both glycan composition and structure are summarized. In addition, potential problems and their resolutions are addressed.

Research paper thumbnail of Determination of Protein Turnover in Human Infants and Alveolar Type 2 Cells

Research paper thumbnail of Determination of the Intra-individual Variability of Protein Expression in Benign/Cancerous Prostate Tissue via LC-MS–Efforts Towards Molecular Classification

Research paper thumbnail of Homopteran Vector Biomarkers for Efficient Circulative Plant Virus Transmission are Conserved in Multiple Aphid Species and the Whitefly Bemisia tabaci

Journal of Integrative Agriculture, 2012

ABSTRACT Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and a... more ABSTRACT Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and are transmitted in a persistent, circulative manner by homopteran insects. Using fluorescence 2-D difference gel electrophoresis to compare the proteomes of F2 genotypes of Schizaphis graminum segregating for virus transmission ability, we recently discovered a panel of protein biomarkers that predict vector competency. Here we used aphid and whitefly nucleotide and expressed sequence tag database mining to test whether these biomarkers are conserved in other homopteran insects. S. graminum gene homologs that shared a high degree of predicted amino acid identity were discovered in two other aphid species and in the whitefly Bemisia tabaci. Selected reaction monitoring mass spectrometry was used to validate the expression of these biomarkers proteins in multiple aphid vector species. The conservation of these proteins in multiple insect taxa that transmit plant viruses along the circulative transmission pathway creates the opportunity to use these biomarkers to rapidly identify insect populations that are the most efficient vectors and allow them to be targeted for control prior to the spread of virus within a crop.

Research paper thumbnail of C/EBPα regulates CRL4 Cdt2 -mediated degradation of p21 in response to UVB-induced DNA damage to control the G 1 /S checkpoint

Cell Cycle, 2014

The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in... more The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4(Cdt2). Cdt2 is the substrate recognition subunit of CRL4(Cdt2) and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4(Cdt2) mediated degradation of p21.

Research paper thumbnail of Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission

PloS one, 2012

Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV)... more Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data s...

Research paper thumbnail of Genomic and Proteomic Analysis of Schizaphis graminum Reveals Cyclophilin Proteins Are Involved in the Transmission of Cereal Yellow Dwarf Virus

PLoS ONE, 2013

Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwi... more Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV). The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S. graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate virus transport from the hindgut lumen into the hemocoel.

Research paper thumbnail of Mass measurement accuracy comparisons between a double-focusing magnetic sector and a time-of-flight mass analyzer

Rapid Communications in Mass Spectrometry, 2008

We report a direct comparison of the mass measurement accuracies (MMAs) obtained on different mas... more We report a direct comparison of the mass measurement accuracies (MMAs) obtained on different mass spectrometry instrument types; a magnetic sector as the 'gold standard' and an electrospray ionization time-of-flight (ESI-TOF) instrument. Sixty samples, obtained from the Department of Chemistry at North Carolina State University, were analyzed on each instrument. Data are presented and compared between the different instruments. The average absolute MMAs achieved for the magnetic sector and Agilent ESI-TOF mass spectrometers were 3.0 and 1.1 ppm, respectively.

Research paper thumbnail of Direct high-resolution peptide and protein analysis by desorption electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

Rapid Communications in Mass Spectrometry, 2006

We report the first coupling of a desorption electrospray ionization (DESI) ion source to Fourier... more We report the first coupling of a desorption electrospray ionization (DESI) ion source to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) for high-resolution protein analysis. The DESI FT-ICR-MS source design is described in detail along with preliminary data obtained on peptides and proteins ranging from 1 to 5.7 kDa.

Research paper thumbnail of The development of selected reaction monitoring methods for targeted proteomics via empirical refinement

PROTEOMICS, 2012

Software advancements in the last several years have had a significant impact on proteomics from ... more Software advancements in the last several years have had a significant impact on proteomics from method development to data analysis. Herein we detail a method, which uses our in-house developed software tool termed Skyline, for empirical refinement of candidate peptides from targeted proteins. The method consists of 4 main steps from generation of a testable hypothesis, method development, peptide refinement, to peptide validation. The ultimate goal is to identify the best performing peptide in terms of ionization efficiency, reproducibility, specificity, and chromatographic characteristics to monitor as a proxy for protein abundance. It is important to emphasize that this method allows the user to perform this refinement procedure in the sample matrix and organism of interest with the instrumentation available. Finally, the method is demonstrated in a case study to determine the best peptide to monitor the abundance of surfactant protein B in lung aspirates.

Research paper thumbnail of Comparison between procedures using SDS for shotgun proteomic analyses of complex samples

PROTEOMICS, 2011

Filter aided sample preparation (FASP) and a new sample preparation method using a modified comme... more Filter aided sample preparation (FASP) and a new sample preparation method using a modified commercial SDS removal spin column are quantitatively compared in terms of their performance for shotgun proteomic experiments in three complex proteomic samples: a Saccharomyces cerevisiae lysate (insoluble fraction), a Caenorhabditis elegans lysate (soluble fraction), and a human embryonic kidney cell line (HEK293T). The characteristics and total number of peptides and proteins identified are compared between the two procedures. The SDS spin column procedure affords a conservative 4-fold improvement in throughput, is more reproducible, less expensive (i.e., requires less materials), and identifies between 30-107% more peptides at a q≤0.01, than the FASP procedure. The peptides identified by SDS spin column are more hydrophobic than species identified by the FASP procedure as indicated by the distribution of GRAVY scores. Ultimately, these improvements correlate to as great as a 50% increase in protein identifications with 2 or more peptides.

Research paper thumbnail of Garrod's fourth inborn error of metabolism solved by the identification of mutations causing pentosuria

Proceedings of the National Academy of Sciences, 2011

Research paper thumbnail of Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline: APPLICATION TO PROTEIN ACETYLATION AND PHOSPHORYLATION

Molecular & Cellular Proteomics, 2012

Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, the... more Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.

Research paper thumbnail of Development and Characterization of a Novel Plug and Play Liquid Chromatography-Mass Spectrometry (LC-MS) Source That Automates Connections between the Capillary Trap, Column, and Emitter

Molecular & Cellular Proteomics, 2013

We report the development and characterization of a novel, vendor-neutral ultra-high pressure-com... more We report the development and characterization of a novel, vendor-neutral ultra-high pressure-compatible (~10,000 p.s.i.) LC-MS source. This device is the first to make automated connections with user-packed capillary traps, columns, and capillary emitters. The source uses plastic rectangular inserts (referred to here as cartridges) where individual components (i.e. trap, column, or emitter) can be exchanged independent of one another in a plug and play manner. Automated robotic connections are made between the three cartridges using linear translation powered by stepper motors to axially compress each cartridge by applying a well controlled constant compression force to each commercial LC fitting. The user has the versatility to tailor the separation (e.g. the length of the column, type of stationary phase, and mode of separation) to the experimental design of interest in a cost-effective manner. The source is described in detail, and several experiments are performed to evaluate the robustness of both the system and the exchange of the individual trap and emitter cartridges. The standard deviation in the retention time of four targeted peptides from a standard digest interlaced with a soluble Caenorhabditis elegans lysate ranged between 3.1 and 5.3 s over 3 days of analyses. Exchange of the emitter cartridge was found to have an insignificant effect on the abundance of various peptides. In addition, the trap cartridge can be replaced with minimal effects on retention time (<20 s).

Research paper thumbnail of Implementation of Statistical Process Control for Proteomic Experiments Via LC MS/MS

Journal of The American Society for Mass Spectrometry, 2014

Statistical process control (SPC) is a robust set of tools that aids in the visualization, detect... more Statistical process control (SPC) is a robust set of tools that aids in the visualization, detection, and identification of assignable causes of variation in any process that creates products, services, or information. A tool has been developed termed Statistical Process Control in Proteomics (SProCoP) which implements aspects of SPC (e.g., control charts and Pareto analysis) into the Skyline proteomics software. It monitors five quality control metrics in a shotgun or targeted proteomic workflow. None of these metrics require peptide identification. The source code, written in the R statistical language, runs directly from the Skyline interface, which supports the use of raw data files from several of the mass spectrometry vendors. It provides real time evaluation of the chromatographic performance (e.g., retention time reproducibility, peak asymmetry, and resolution), and mass spectrometric performance (targeted peptide ion intensity and mass measurement accuracy for high resolving power instruments) via control charts. Thresholds are experiment- and instrument-specific and are determined empirically from user-defined quality control standards that enable the separation of random noise and systematic error. Finally, Pareto analysis provides a summary of performance metrics and guides the user to metrics with high variance. The utility of these charts to evaluate proteomic experiments is illustrated in two case studies.

Research paper thumbnail of Effects of Column and Gradient Lengths on Peak Capacity and Peptide Identification in Nanoflow LC-MS/MS of Complex Proteomic Samples

Journal of The American Society for Mass Spectrometry, 2013

Reversed-phase liquid chromatography is the most commonly used separation method for shotgun prot... more Reversed-phase liquid chromatography is the most commonly used separation method for shotgun proteomics. Nanoflow chromatography has emerged as the preferred chromatography method for its increased sensitivity and separation. Despite its common use, there are a wide range of parameters and conditions used across research groups. These parameters have an effect on the quality of the chromatographic separation, which is critical to maximizing the number of peptide identifications and minimizing ion suppression. Here we examined the relationship between column lengths, gradient lengths, peptide identifications, and peptide peak capacity. We found that while longer column and gradient lengths generally increase peptide identifications, the degree of improvement is dependent on both parameters and is diminished at longer column and gradients. Peak capacity, in comparison, showed a more linear increase with column and gradient lengths. We discuss the discrepancy between these two results and some of the considerations that should be taken into account when deciding on the chromatographic conditions for a proteomics experiment.

Research paper thumbnail of De Novo Correction of Mass Measurement Error in Low Resolution Tandem MS Spectra for Shotgun Proteomics

Journal of The American Society for Mass Spectrometry, 2012

We report an algorithm designed for the calibration of low resolution peptide mass spectra. Our a... more We report an algorithm designed for the calibration of low resolution peptide mass spectra. Our algorithm is implemented in a program called FineTune, which corrects systematic mass measurement error in 1 min, with no input required besides the mass spectra themselves. The mass measurement accuracy for a set of spectra collected on an LTQ-Velos improved 20-fold from -0.1776±0.0010m/z to 0.0078±0.0006m/z after calibration (avg±95 % confidence interval). The precision in mass measurement was improved due to the correction of non-linear variation in mass measurement accuracy across the m/z range.

Research paper thumbnail of Detection of Attomole Amounts of Analyte by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) Determined Using Fluorescence Spectroscopy

Journal of the American Society for Mass Spectrometry, 2007

We report the use of fluorescence spectroscopy to investigate the amount of material removed from... more We report the use of fluorescence spectroscopy to investigate the amount of material removed from a PTFE surface and detected during desorption electrospray ionization (DESI) mass spectrometry measurements. The fluorescence intensity before and after DESI analysis of rhodamine 6G is used to determine the amount of material removed from the surface per mass spectrum. Calculations indicate low attomole amounts are removed per linear ion trap mass spectrum.

Research paper thumbnail of Tutorial Workshop Session Abstracts

Research paper thumbnail of Toxicoproteomic analysis of pulmonary carbon nanotube exposure using LC-MS/MS

Toxicology, 2015

Toxicoproteomics is a developing field that utilizes global proteomic methodologies to investigat... more Toxicoproteomics is a developing field that utilizes global proteomic methodologies to investigate the physiological response as a result of adverse toxicant exposure. The aim of this study was to compare the protein secretion profile in lung bronchoalveolar lavage fluid (BALF) from mice exposed to non-functionalized multi-walled carbon nanotubes (U-MWCNTs) or MWCNTs functionalized by nanoscale Al2O3 coatings (A-MWCNT) formed using atomic layer deposition (ALD). Proteins were identified using liquid chromatography tandem mass spectrometry (LC-MS/MS), and quantified using a combination of two label-free proteomic methods: spectral counting and MS1 peak area analysis. On average 465 protein groups were identified per sample and proteins were first screened using spectral counting and the Fisher's exact test to determine differentially regulated species. Significant proteins by Fisher's exact test (p<0.05) were then verified by integrating the intensity under the extracted ion chromatogram from a single unique peptide for each protein across all runs. A two sample t-test based on integrated peak intensities discovered differences in 27 proteins for control versus U-MWCNT, 13 proteins for control versus A-MWCNT, and 2 proteins for U-MWCNT versus A-MWCNT. Finally, an in-vitro binding experiment was performed yielding 4 common proteins statistically different (p<0.05) for both the in-vitro and in-vivo study. Several of the proteins found to be significantly different between exposed and control groups are known to play a key role in inflammatory and immune response. A comparison between the in-vitro and in-vivo CNT exposure emphasized a true biological response to CNT exposure.

Research paper thumbnail of N-Linked Global Glycan Profiling by NanoLC Mass Spectrometry

Methods in Molecular Biology, 2011

A method is detailed for the global profiling of underivatized N-linked glycans that are derived ... more A method is detailed for the global profiling of underivatized N-linked glycans that are derived from complex protein mixtures. The method consists of five main steps that include the following: (1) protein denaturation; (2) enzymatic digestion; (3) solid phase extraction; (4) nanoLC MS analysis; and (5) data interpretation. Materials, methods, and algorithms for the identification of both glycan composition and structure are summarized. In addition, potential problems and their resolutions are addressed.

Research paper thumbnail of Determination of Protein Turnover in Human Infants and Alveolar Type 2 Cells

Research paper thumbnail of Determination of the Intra-individual Variability of Protein Expression in Benign/Cancerous Prostate Tissue via LC-MS–Efforts Towards Molecular Classification

Research paper thumbnail of Homopteran Vector Biomarkers for Efficient Circulative Plant Virus Transmission are Conserved in Multiple Aphid Species and the Whitefly Bemisia tabaci

Journal of Integrative Agriculture, 2012

ABSTRACT Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and a... more ABSTRACT Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and are transmitted in a persistent, circulative manner by homopteran insects. Using fluorescence 2-D difference gel electrophoresis to compare the proteomes of F2 genotypes of Schizaphis graminum segregating for virus transmission ability, we recently discovered a panel of protein biomarkers that predict vector competency. Here we used aphid and whitefly nucleotide and expressed sequence tag database mining to test whether these biomarkers are conserved in other homopteran insects. S. graminum gene homologs that shared a high degree of predicted amino acid identity were discovered in two other aphid species and in the whitefly Bemisia tabaci. Selected reaction monitoring mass spectrometry was used to validate the expression of these biomarkers proteins in multiple aphid vector species. The conservation of these proteins in multiple insect taxa that transmit plant viruses along the circulative transmission pathway creates the opportunity to use these biomarkers to rapidly identify insect populations that are the most efficient vectors and allow them to be targeted for control prior to the spread of virus within a crop.

Research paper thumbnail of C/EBPα regulates CRL4 Cdt2 -mediated degradation of p21 in response to UVB-induced DNA damage to control the G 1 /S checkpoint

Cell Cycle, 2014

The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in... more The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4(Cdt2). Cdt2 is the substrate recognition subunit of CRL4(Cdt2) and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4(Cdt2) mediated degradation of p21.

Research paper thumbnail of Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission

PloS one, 2012

Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV)... more Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data s...

Research paper thumbnail of Genomic and Proteomic Analysis of Schizaphis graminum Reveals Cyclophilin Proteins Are Involved in the Transmission of Cereal Yellow Dwarf Virus

PLoS ONE, 2013

Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwi... more Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV). The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S. graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate virus transport from the hindgut lumen into the hemocoel.

Research paper thumbnail of Mass measurement accuracy comparisons between a double-focusing magnetic sector and a time-of-flight mass analyzer

Rapid Communications in Mass Spectrometry, 2008

We report a direct comparison of the mass measurement accuracies (MMAs) obtained on different mas... more We report a direct comparison of the mass measurement accuracies (MMAs) obtained on different mass spectrometry instrument types; a magnetic sector as the 'gold standard' and an electrospray ionization time-of-flight (ESI-TOF) instrument. Sixty samples, obtained from the Department of Chemistry at North Carolina State University, were analyzed on each instrument. Data are presented and compared between the different instruments. The average absolute MMAs achieved for the magnetic sector and Agilent ESI-TOF mass spectrometers were 3.0 and 1.1 ppm, respectively.

Research paper thumbnail of Direct high-resolution peptide and protein analysis by desorption electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

Rapid Communications in Mass Spectrometry, 2006

We report the first coupling of a desorption electrospray ionization (DESI) ion source to Fourier... more We report the first coupling of a desorption electrospray ionization (DESI) ion source to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) for high-resolution protein analysis. The DESI FT-ICR-MS source design is described in detail along with preliminary data obtained on peptides and proteins ranging from 1 to 5.7 kDa.

Research paper thumbnail of The development of selected reaction monitoring methods for targeted proteomics via empirical refinement

PROTEOMICS, 2012

Software advancements in the last several years have had a significant impact on proteomics from ... more Software advancements in the last several years have had a significant impact on proteomics from method development to data analysis. Herein we detail a method, which uses our in-house developed software tool termed Skyline, for empirical refinement of candidate peptides from targeted proteins. The method consists of 4 main steps from generation of a testable hypothesis, method development, peptide refinement, to peptide validation. The ultimate goal is to identify the best performing peptide in terms of ionization efficiency, reproducibility, specificity, and chromatographic characteristics to monitor as a proxy for protein abundance. It is important to emphasize that this method allows the user to perform this refinement procedure in the sample matrix and organism of interest with the instrumentation available. Finally, the method is demonstrated in a case study to determine the best peptide to monitor the abundance of surfactant protein B in lung aspirates.

Research paper thumbnail of Comparison between procedures using SDS for shotgun proteomic analyses of complex samples

PROTEOMICS, 2011

Filter aided sample preparation (FASP) and a new sample preparation method using a modified comme... more Filter aided sample preparation (FASP) and a new sample preparation method using a modified commercial SDS removal spin column are quantitatively compared in terms of their performance for shotgun proteomic experiments in three complex proteomic samples: a Saccharomyces cerevisiae lysate (insoluble fraction), a Caenorhabditis elegans lysate (soluble fraction), and a human embryonic kidney cell line (HEK293T). The characteristics and total number of peptides and proteins identified are compared between the two procedures. The SDS spin column procedure affords a conservative 4-fold improvement in throughput, is more reproducible, less expensive (i.e., requires less materials), and identifies between 30-107% more peptides at a q≤0.01, than the FASP procedure. The peptides identified by SDS spin column are more hydrophobic than species identified by the FASP procedure as indicated by the distribution of GRAVY scores. Ultimately, these improvements correlate to as great as a 50% increase in protein identifications with 2 or more peptides.

Research paper thumbnail of Garrod's fourth inborn error of metabolism solved by the identification of mutations causing pentosuria

Proceedings of the National Academy of Sciences, 2011

Research paper thumbnail of Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline: APPLICATION TO PROTEIN ACETYLATION AND PHOSPHORYLATION

Molecular & Cellular Proteomics, 2012

Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, the... more Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.

Research paper thumbnail of Development and Characterization of a Novel Plug and Play Liquid Chromatography-Mass Spectrometry (LC-MS) Source That Automates Connections between the Capillary Trap, Column, and Emitter

Molecular & Cellular Proteomics, 2013

We report the development and characterization of a novel, vendor-neutral ultra-high pressure-com... more We report the development and characterization of a novel, vendor-neutral ultra-high pressure-compatible (~10,000 p.s.i.) LC-MS source. This device is the first to make automated connections with user-packed capillary traps, columns, and capillary emitters. The source uses plastic rectangular inserts (referred to here as cartridges) where individual components (i.e. trap, column, or emitter) can be exchanged independent of one another in a plug and play manner. Automated robotic connections are made between the three cartridges using linear translation powered by stepper motors to axially compress each cartridge by applying a well controlled constant compression force to each commercial LC fitting. The user has the versatility to tailor the separation (e.g. the length of the column, type of stationary phase, and mode of separation) to the experimental design of interest in a cost-effective manner. The source is described in detail, and several experiments are performed to evaluate the robustness of both the system and the exchange of the individual trap and emitter cartridges. The standard deviation in the retention time of four targeted peptides from a standard digest interlaced with a soluble Caenorhabditis elegans lysate ranged between 3.1 and 5.3 s over 3 days of analyses. Exchange of the emitter cartridge was found to have an insignificant effect on the abundance of various peptides. In addition, the trap cartridge can be replaced with minimal effects on retention time (<20 s).

Research paper thumbnail of Implementation of Statistical Process Control for Proteomic Experiments Via LC MS/MS

Journal of The American Society for Mass Spectrometry, 2014

Statistical process control (SPC) is a robust set of tools that aids in the visualization, detect... more Statistical process control (SPC) is a robust set of tools that aids in the visualization, detection, and identification of assignable causes of variation in any process that creates products, services, or information. A tool has been developed termed Statistical Process Control in Proteomics (SProCoP) which implements aspects of SPC (e.g., control charts and Pareto analysis) into the Skyline proteomics software. It monitors five quality control metrics in a shotgun or targeted proteomic workflow. None of these metrics require peptide identification. The source code, written in the R statistical language, runs directly from the Skyline interface, which supports the use of raw data files from several of the mass spectrometry vendors. It provides real time evaluation of the chromatographic performance (e.g., retention time reproducibility, peak asymmetry, and resolution), and mass spectrometric performance (targeted peptide ion intensity and mass measurement accuracy for high resolving power instruments) via control charts. Thresholds are experiment- and instrument-specific and are determined empirically from user-defined quality control standards that enable the separation of random noise and systematic error. Finally, Pareto analysis provides a summary of performance metrics and guides the user to metrics with high variance. The utility of these charts to evaluate proteomic experiments is illustrated in two case studies.

Research paper thumbnail of Effects of Column and Gradient Lengths on Peak Capacity and Peptide Identification in Nanoflow LC-MS/MS of Complex Proteomic Samples

Journal of The American Society for Mass Spectrometry, 2013

Reversed-phase liquid chromatography is the most commonly used separation method for shotgun prot... more Reversed-phase liquid chromatography is the most commonly used separation method for shotgun proteomics. Nanoflow chromatography has emerged as the preferred chromatography method for its increased sensitivity and separation. Despite its common use, there are a wide range of parameters and conditions used across research groups. These parameters have an effect on the quality of the chromatographic separation, which is critical to maximizing the number of peptide identifications and minimizing ion suppression. Here we examined the relationship between column lengths, gradient lengths, peptide identifications, and peptide peak capacity. We found that while longer column and gradient lengths generally increase peptide identifications, the degree of improvement is dependent on both parameters and is diminished at longer column and gradients. Peak capacity, in comparison, showed a more linear increase with column and gradient lengths. We discuss the discrepancy between these two results and some of the considerations that should be taken into account when deciding on the chromatographic conditions for a proteomics experiment.

Research paper thumbnail of De Novo Correction of Mass Measurement Error in Low Resolution Tandem MS Spectra for Shotgun Proteomics

Journal of The American Society for Mass Spectrometry, 2012

We report an algorithm designed for the calibration of low resolution peptide mass spectra. Our a... more We report an algorithm designed for the calibration of low resolution peptide mass spectra. Our algorithm is implemented in a program called FineTune, which corrects systematic mass measurement error in 1 min, with no input required besides the mass spectra themselves. The mass measurement accuracy for a set of spectra collected on an LTQ-Velos improved 20-fold from -0.1776±0.0010m/z to 0.0078±0.0006m/z after calibration (avg±95 % confidence interval). The precision in mass measurement was improved due to the correction of non-linear variation in mass measurement accuracy across the m/z range.

Research paper thumbnail of Detection of Attomole Amounts of Analyte by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) Determined Using Fluorescence Spectroscopy

Journal of the American Society for Mass Spectrometry, 2007

We report the use of fluorescence spectroscopy to investigate the amount of material removed from... more We report the use of fluorescence spectroscopy to investigate the amount of material removed from a PTFE surface and detected during desorption electrospray ionization (DESI) mass spectrometry measurements. The fluorescence intensity before and after DESI analysis of rhodamine 6G is used to determine the amount of material removed from the surface per mass spectrum. Calculations indicate low attomole amounts are removed per linear ion trap mass spectrum.