Mohamed Boussaa - Academia.edu (original) (raw)
Uploads
Papers by Mohamed Boussaa
Software Testing, Verification and Reliability
Generative software development has paved the way for the creation of multiple code generators th... more Generative software development has paved the way for the creation of multiple code generators that serve as a basis for automatically generating code to different software and hardware platforms. In this context, the software quality becomes highly correlated to the quality of code generators used during software development. Eventual failures may result in a loss of confidence for the developers, who will unlikely continue to use these generators. It is then crucial to verify the correct behaviour of code generators in order to preserve software quality and reliability. In this paper, we leverage the metamorphic testing approach to automatically detect inconsistencies in code generators via so-called "metamorphic relations". We define the metamorphic relation (i.e., test oracle) as a comparison between the variations of performance and resource usage of test suites running on different versions of generated code. We rely on statistical methods to find the threshold value from which an unexpected variation is detected. We evaluate our approach by testing a family of code generators with respect to resource usage and performance metrics for five different target software platforms. The experimental results show that our approach is able to detect, among 95 executed test suites, 11 performance and 15 memory usage inconsistencies.
Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences - GPCE 2016, 2016
2016 IEEE International Conference on Software Quality, Reliability and Security (QRS), 2016
Generally, compiler users apply different optimizations to generate efficient code with respect t... more Generally, compiler users apply different optimizations to generate efficient code with respect to non-functional properties such as energy consumption, execution time, etc. However, due to the huge number of optimizations provided by modern compilers, finding the best optimization sequence for a specific objective and a given program is more and more challenging. This paper proposes NOTICE, a component-based framework for non-functional testing of compilers through the monitoring of generated code in a controlled sand-boxing environment. We evaluate the effectiveness of our approach by verifying the optimizations performed by the GCC compiler. Our experimental results show that our approach is able to auto-tune compilers according to user requirements and construct optimizations that yield to better performance results than standard optimization levels. We also demonstrate that NOTICE can be used to automatically construct optimization levels that represent optimal trade-offs between multiple non-functional properties such as execution time and resource usage requirements.
2015 IEEE/ACM 8th International Workshop on Search-Based Software Testing, 2015
In search-based structural testing, metaheuristic search techniques have been frequently used to ... more In search-based structural testing, metaheuristic search techniques have been frequently used to automate the test data generation. In Genetic Algorithms (GAs) for example, test data are rewarded on the basis of an objective function that represents generally the number of statements or branches covered. However, owing to the wide diversity of possible test data values, it is hard to find the set of test data that can satisfy a specific coverage criterion. In this paper, we introduce the use of Novelty Search (NS) algorithm to the test data generation problem based on statement-covered criteria. We believe that such approach to test data generation is attractive because it allows the exploration of the huge space of test data within the input domain. In this approach, we seek to explore the search space without regard to any objectives. In fact, instead of having a fitness-based selection, we select test cases based on a novelty score showing how different they are compared to all other solutions evaluated so far.
Proceedings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference - GECCO Companion '15, 2015
In search-based structural testing, meta-heuristic search techniques have been frequently used to... more In search-based structural testing, meta-heuristic search techniques have been frequently used to automate test data generation. In this paper, we introduce the use of novelty search algorithm to the test data generation problem based on statement-covered criterion. In this approach, we seek to explore the search space by considering diversity as the unique objective function to be optimized. In fact, instead of having a fitness-based selection, we select test cases based on a novelty score showing how different they are compared to all other solutions evaluated so far.
Software Testing, Verification and Reliability
Generative software development has paved the way for the creation of multiple code generators th... more Generative software development has paved the way for the creation of multiple code generators that serve as a basis for automatically generating code to different software and hardware platforms. In this context, the software quality becomes highly correlated to the quality of code generators used during software development. Eventual failures may result in a loss of confidence for the developers, who will unlikely continue to use these generators. It is then crucial to verify the correct behaviour of code generators in order to preserve software quality and reliability. In this paper, we leverage the metamorphic testing approach to automatically detect inconsistencies in code generators via so-called "metamorphic relations". We define the metamorphic relation (i.e., test oracle) as a comparison between the variations of performance and resource usage of test suites running on different versions of generated code. We rely on statistical methods to find the threshold value from which an unexpected variation is detected. We evaluate our approach by testing a family of code generators with respect to resource usage and performance metrics for five different target software platforms. The experimental results show that our approach is able to detect, among 95 executed test suites, 11 performance and 15 memory usage inconsistencies.
Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences - GPCE 2016, 2016
2016 IEEE International Conference on Software Quality, Reliability and Security (QRS), 2016
Generally, compiler users apply different optimizations to generate efficient code with respect t... more Generally, compiler users apply different optimizations to generate efficient code with respect to non-functional properties such as energy consumption, execution time, etc. However, due to the huge number of optimizations provided by modern compilers, finding the best optimization sequence for a specific objective and a given program is more and more challenging. This paper proposes NOTICE, a component-based framework for non-functional testing of compilers through the monitoring of generated code in a controlled sand-boxing environment. We evaluate the effectiveness of our approach by verifying the optimizations performed by the GCC compiler. Our experimental results show that our approach is able to auto-tune compilers according to user requirements and construct optimizations that yield to better performance results than standard optimization levels. We also demonstrate that NOTICE can be used to automatically construct optimization levels that represent optimal trade-offs between multiple non-functional properties such as execution time and resource usage requirements.
2015 IEEE/ACM 8th International Workshop on Search-Based Software Testing, 2015
In search-based structural testing, metaheuristic search techniques have been frequently used to ... more In search-based structural testing, metaheuristic search techniques have been frequently used to automate the test data generation. In Genetic Algorithms (GAs) for example, test data are rewarded on the basis of an objective function that represents generally the number of statements or branches covered. However, owing to the wide diversity of possible test data values, it is hard to find the set of test data that can satisfy a specific coverage criterion. In this paper, we introduce the use of Novelty Search (NS) algorithm to the test data generation problem based on statement-covered criteria. We believe that such approach to test data generation is attractive because it allows the exploration of the huge space of test data within the input domain. In this approach, we seek to explore the search space without regard to any objectives. In fact, instead of having a fitness-based selection, we select test cases based on a novelty score showing how different they are compared to all other solutions evaluated so far.
Proceedings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference - GECCO Companion '15, 2015
In search-based structural testing, meta-heuristic search techniques have been frequently used to... more In search-based structural testing, meta-heuristic search techniques have been frequently used to automate test data generation. In this paper, we introduce the use of novelty search algorithm to the test data generation problem based on statement-covered criterion. In this approach, we seek to explore the search space by considering diversity as the unique objective function to be optimized. In fact, instead of having a fitness-based selection, we select test cases based on a novelty score showing how different they are compared to all other solutions evaluated so far.