Mohd Amin - Academia.edu (original) (raw)
Papers by Mohd Amin
Journal of Nanomaterials, 2012
Mixed micelles of Pluronic F127 andD-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in di... more Mixed micelles of Pluronic F127 andD-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in different molar ratios (10 : 0, 7 : 3, 5 : 5, and 3 : 7) were prepared to characterize this system as nanocarriers for targeted delivery of chemotherapeutic agents. Their size, zeta potential, critical micelle concentration, drug loading content, entrapment efficiency, drug release, cytotoxicity, and stability in serum were evaluatedin vitroby using doxorubicin as the model anticancer drug. The micellar sizes ranged from 25 to 35 nm. The 7 : 3 and 5 : 5 micellar combinations had lower critical micelle concentrations ( M) than the 10 : 0 combination ( M). The entrapment efficiencies of the 7 : 3, 5 : 5, and 3 : 7 micellar combinations were 72%, 88%, and 69%, respectively. Doxorubicin release was greater at acidic tumour pH than at normal physiological pH. The doxorubicin-loaded mixed micelles showed greater percent inhibition and apoptosis activity in human breast adenocarcinoma (MCF-7) and...
PloS one, 2014
The present study was conducted with the aim to investigate the immuno-modulatory and histologica... more The present study was conducted with the aim to investigate the immuno-modulatory and histological stabilization effects of nanocarrier-based transcutaneous co-delivery of hydrocortisone (HC) and hydroxytyrosol (HT). In this investigation, the clinical and pharmacological efficacies of nanoparticle (NP)-based formulation to alleviate 2,4-dinitrofluorobenzene (DNFB)-induced atopic dermatitis (AD) was explored by using an NC/Nga mouse model. Ex vivo visual examination of AD induction in experimental mice indicated remarkable control of NP-based formulations in reducing pathological severity of AD-like skin lesions. Therapeutic effectiveness of NP-based formulations was also evaluated by comparing skin thickness of AD-induced NP-treated mice (456±27 µm) with that of atopic mice (916±37 µm). Analysis of the immuno-spectrum of AD also revealed the dominance of NP-based formulations in restraining immunoglobulin-E (IgE), histamine, prostaglandin-E2 (PGE2), vascular endothelial growth fact...
Nanoscale Research Letters, 2012
Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyet... more Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyethyleneimine (PEI) for the delivery of antitumor drugs. The CA-PEI copolymer was synthesized via pairing mediated by N,N’-dicyclohexylcarbodiimide and N-hydroxysuccinimide using dichloromethane as a solvent. Fourier transform infrared and nuclear magnetic resonance analyses were performed to verify the formation of an amide linkage between CA and PEI and doxorubicin localization into the copolymer. Dynamic light scattering and transmission electron microscopy studies revealed that the copolymer could self-assemble into micelles with a spherical morphology and an average diameter of <200 nm. The CA-PEI copolymer was also characterized by X-ray diffraction and differential scanning calorimetry. Doxorubicin-loaded micelles were prepared by dialysis method. A drug release study showed reduced drug release with escalating drug content. In a cytotoxicity assay using human colorectal adenocar...
Journal of Pharmacy and Pharmacology, Mar 17, 2014
Objectives The field of pharmaceutical technology is expanding rapidly because of the increasing ... more Objectives The field of pharmaceutical technology is expanding rapidly because of the increasing number of drug delivery options. Successful drug delivery is influenced by multiple factors, one of which is the appropriate identification of materials for research and engineering of new drug delivery systems. Bacterial cellulose (BC) is one such biopolymer that fulfils the criteria for consideration as a drug delivery material. Key findings BC showed versatility in terms of its potential for in-situ modulation, chemical modification after synthesis and application in the biomedical field, thus expanding the current, more limited view of BC and facilitating the investigation of its potential for application in drug delivery. Summary Cellulose, which is widely available in nature, has numerous applications. One of the applications is that of BC in the pharmaceutical and biomedical fields, where it has been primarily applied for transdermal formulations to improve clinical outcomes. This review takes a multidisciplinary approach to consideration of the feasibility and potential benefits of BC in the development of other drug delivery systems for various routes of administration.
Heliyon, 2019
Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to ... more Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
Pharmaceutical Sciences, 2016
Drug discovery today, Apr 23, 2016
The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding a... more The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy.
Journal of microencapsulation, Jan 26, 2016
Wounds that remain in the inflammatory phase for a prolonged period of time are likely to be colo... more Wounds that remain in the inflammatory phase for a prolonged period of time are likely to be colonised and infected by a range of commensal and pathogenic microorganisms. Treatment associated with these types of wounds mainly focuses on controlling infection and providing an optimum environment capable of facilitating re-epithelialisation, thus promoting wound healing. Hydrogels have attracted vast interest as moist wound-responsive dressing materials. In the current study, biosynthetic bacterial cellulose hydrogels synthesised by Gluconacetobacter xylinus and subsequently loaded with silver were characterised and investigated for their antimicrobial activity against two representative wound infecting pathogens, namely S. aureus and P. aeruginosa. Silver nitrate and silver zeolite provided the source of silver and loading parameters were optimised based on experimental findings. The results indicate that both AgNO3 and AgZ loaded biosynthetic hydrogels possess antimicrobial activity...
International Wound Journal, 2016
The increasing occurrence of hospital‐acquired infections and the emerging problems posed by anti... more The increasing occurrence of hospital‐acquired infections and the emerging problems posed by antibiotic‐resistant microbial strains have both contributed to the escalating cost of treatment. The presence of infection at the wound site can potentially stall the healing process at the inflammatory stage, leading to the development of a chronic wound. Traditional wound treatment regimes can no longer cope with the complications posed by antibiotic‐resistant strains; hence, there is a need to explore the use of alternative antimicrobial agents. Pre‐antibiotic compounds, including heavy metal ions and essential oils, have been re‐investigated for their potential use as effective antimicrobial agents. Essential oils have potent antimicrobial, antifungal, antiviral, anti‐inflammatory, antioxidant and other beneficial therapeutic properties. Similarly, heavy metal ions have also been used as disinfecting agents because of their broad spectrum activities. Both of these alternative antimicrob...
Materials Today, 2015
Therapeutics based on RNA interference mechanisms are highly promising for the management of seve... more Therapeutics based on RNA interference mechanisms are highly promising for the management of several diseases including multi-drug resistant cancers. However, effective delivery of siRNAs and oligonucleotides still remains challenging. In this regard, hyper-branched, PAMAM dendrimers having unique three-dimensional architecture and nanoscale size, with cationic surface charge can potentially serve as siRNA condensing agents as well as robust nano-vectors for targeted delivery. In addition, their surface functionality permits conjugation of drugs and genes or development of hybrid systems for combination therapy. Thus far, in vitro cellular testing of dendrimer-mediated siRNA delivery has revealed great potential, with reports on their in vivo effectiveness starting to appear. These favorable outcomes portend a promising future for dendrimer mediated RNAi therapeutics.
International Journal of Polymer Science, 2013
This study evaluated the effect of solubilized and dispersed bacterial cellulose (BC) on the phys... more This study evaluated the effect of solubilized and dispersed bacterial cellulose (BC) on the physicochemical characteristics and drug release profile of hydrogels synthesized using biopolymers. Superabsorbent hydrogels were synthesized by graft polymerization of acrylamide on BC solubilized in an NaOH/urea solvent system and on dispersed BC by usingN,N′-methylenebisacrylamide as a crosslinker under microwave irradiation. Fourier transform infrared spectroscopy analysis of the resulting hydrogels confirmed the grafting, and an X-ray diffraction pattern showed a decrease in the crystallinity of BC after the grafting process. The hydrogels exhibited pH and ionic responsive swelling behavior, with hydrogels prepared using solubilized BC (SH) having higher swelling ratios. Furthermore, compared to the hydrogels synthesized using dispersed BC, the hydrogels synthesized using solubilized BC showed higher porosity, drug loading efficiency, and release. These results suggest the superiority ...
Advances in Agricultural and Food Research Journal
The study presents the performance and potential of an evaporative-cooled storage system for the ... more The study presents the performance and potential of an evaporative-cooled storage system for the short-term storage of fruit vegetables during transportation. The evaporative cooler, storage unit, power supply, control panel, and real-time data monitoring system are the components of the evaporative-cooled storage system. In this study, the system performance was assessed in terms of the cooling profile of the storage unit (temperature and relative humidity profiles), and postharvest quality of the selected fruit vegetables (chili, tomato, and long bean) for the fresh market. Three storage treatments for the selected fruit vegetables were investigated, i.e., evaporative-cooled storage unit (T1), ambient room (T2), and cold room (T3). The average temperature inside the storage unit was T3 < T2 < T1. T1 demonstrated RH of > 90 %, in agreement with recommended RH for vegetable storage. Post-five-hour storage treatments, vegetables stored under T1 exhibited the least weight los...
Pharmaceutics
Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global he... more Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global health due to its high incidence, metastasis, and mortality rates. Despite numerous studies and favorable improvements in the therapeutic strategies over the past few decades, the prognosis of this disease remains dismal. Moreover, several drawbacks are associated with the conventional treatment; including permanent disfigurement and physical impairment that are attributed to surgical intervention, and systemic toxicity that results from aggressive radio- or chemotherapies, which impacts patients’ prognosis and post-treatment quality of life. The highly vascularized, non-keratinized oral mucosa appears as a potential route for cytotoxic drug administration in treating oral cancer. It acts as a non-invasive portal for drug entry targeting the local oral lesions of the early stages of cancer and the systemic metastasis sites of advanced cancer. The absorption of the poorly aqueous-soluble an...
Polymers, 2020
Various swelling drug delivery devices are promising materials for control drug delivery because ... more Various swelling drug delivery devices are promising materials for control drug delivery because of their ability to swell and release entrapped therapeutics, in response to physiological stimuli. Previously, many mathematical models have been developed to predict the mechanism of drug release from a swelling device. However, some of these models do not consider the changes in diffusion behaviour as the device swells. Therefore, we used a two-phase approach to simplify the mathematical model considering the effect of swelling on the diffusion coefficient. We began by defining a moving boundary problem to consider the swelling process. Landau transformation was used for mitigating the moving boundary problem. The transformed problem was analytically solved using the separation of variables method. Further, the analytical solution was extended to include the drug release in two phases where each phase has distinct diffusion coefficient and continuity condition was applied. The newly d...
Polymers, 2020
Improved physicochemical properties of chitosan-curcumin nanoparticulate carriers using microwave... more Improved physicochemical properties of chitosan-curcumin nanoparticulate carriers using microwave technology for skin burn wound application are reported. The microwave modified low molecular weight chitosan variant was used for nanoparticle formulation by ionic gelation method nanoparticles analyzed for their physicochemical properties. The antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa cultures, cytotoxicity and cell migration using human dermal fibroblasts—an adult cell line—were studied. The microwave modified chitosan variant had significantly reduced molecular weight, increased degree of deacetylation and decreased specific viscosity. The nanoparticles were nano-sized with high positive charge and good dispersibility with entrapment efficiency and drug content in between 99% and 100%, demonstrating almost no drug loss. Drug release was found to be sustained following Fickian the diffusion mechanism for drug release with higher cumulative drug r...
Scientific reports, Jan 13, 2018
Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound... more Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound dressing for partial-thickness burn wound. It is also a promising biomaterial cell carrier because it bears some resemblance to the natural soft tissue. This study assessed its ability to deliver human epidermal keratinocytes (EK) and dermal fibroblasts (DF) for the treatment of full-thickness skin lesions. In vitro studies demonstrated that BC/AA hydrogel had excellent cell attachment, maintained cell viability with limited migration, and allowed cell transfer. In vivo wound closure, histological, immunohistochemistry, and transmission electron microscopy evaluation revealed that hydrogel alone (HA) and hydrogel with cells (HC) accelerated wound healing compared to the untreated controls. Gross appearance and Masson's trichrome staining indicated that HC was better than HA. This study suggests the potential application of BC/AA hydrogel with dual functions, as a cell carrier and wo...
Drug delivery and translational research, Feb 4, 2016
Burn wound management is a complex process because the damage may extend as far as the dermis whi... more Burn wound management is a complex process because the damage may extend as far as the dermis which has an acknowledged slow rate of regeneration. This study investigates the feasibility of using hydrogel microparticles composed of bacterial cellulose and polyacrylamide as a dressing material for coverage of partial-thickness burn wounds. The microparticulate carrier structure and surface morphology were investigated by Fourier transform infrared, X-ray diffraction, elemental analysis, and scanning electron microscopy. The cytotoxicity profile of the microparticles showed cytocompatibility with L929 cells. Dermal irritation test demonstrated that the hydrogel was non-irritant to the skin and had a significant effect on wound contraction compared to the untreated group. Moreover, histological examination of in vivo burn healing samples revealed that the hydrogel treatment enhanced epithelialization and accelerated fibroblast proliferation with wound repair and intact skin achieved by...
Nanoscale Research Letters, 2016
This study developed novel triblock pH-responsive polymeric micelles (PMs) using cholic acid-poly... more This study developed novel triblock pH-responsive polymeric micelles (PMs) using cholic acid-polyethyleneiminepoly-L-arginine (CA-PEI-pArg) copolymers. PEI provided pH sensitivity, while the hydrophilic cell-penetrating pArg peptide promoted cellular PM internalization. The copolymers self-assembled into PMs in aqueous solution at above the critical micelle concentration (2.98 × 10 −7 M) and encapsulated doxorubicin in the core region, with a 34. 2% (w/w) entrapment efficiency. PMs showed pH-dependent swelling, increasing in size by almost sevenfold from pH 7.4 to 5.0. Doxorubicin release was pH-dependent, with about 65% released at pH 5.0, and 32% at pH 7.4. Cellular uptake, assessed by confocal microscopy and flow cytometry, was enhanced by using doxorubicin-loaded CA-PEI-pArg PMs, as compared to free doxorubicin and DOX-loaded CA-PEI PMs. Moreover, 24-h incubation of these PMs with a human breast cancer cell line produced greater cytotoxicity than free doxorubicin. These results indicate that pH-responsive CA-PEI-pArg micelles could provide a versatile delivery system for targeted cancer therapy using hydrophobic drugs.
Medicines, 2016
The emerging problems posed by antibiotic resistance complicate the treatment regime required for... more The emerging problems posed by antibiotic resistance complicate the treatment regime required for wound infections and are driving the need to develop more effective methods of wound management. There is growing interest in the use of alternative, broad spectrum, pre-antibiotic antimicrobial agents such as essential oils (e.g., tea tree oil, TTO) and metal ions (e.g., silver, Ag +). Both TTO and Ag + have broad spectrum antimicrobial activity and act on multiple target sites, hence reducing the likelihood of developing resistance. Combining such agents with responsive, controlled release delivery systems such as hydrogels may enhance microbiocidal activity and promote wound healing. The advantages of using chitosan to formulate the hydrogels include its biocompatible, mucoadhesive and controlled release properties. In this study, hydrogels loaded with TTO and Ag + exhibited antimicrobial activity against P. aeruginosa, S. aureus and C. albicans. Combining TTO and Ag + into the hydrogel further improved antimicrobial activity by lowering the effective concentrations required, respectively. This has obvious advantages for reducing the potential toxic effects on the healthy tissues surrounding the wound. These studies highlight the feasibility of delivering lower effective concentrations of antimicrobial agents such as TTO and Ag + in ionically crosslinked chitosan hydrogels to treat common wound-infecting pathogens.
International Journal of Nanomedicine, 2015
Background: Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating vario... more Background: Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (d-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. Methods: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue ® assay. Results: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.
Journal of Nanomaterials, 2012
Mixed micelles of Pluronic F127 andD-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in di... more Mixed micelles of Pluronic F127 andD-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in different molar ratios (10 : 0, 7 : 3, 5 : 5, and 3 : 7) were prepared to characterize this system as nanocarriers for targeted delivery of chemotherapeutic agents. Their size, zeta potential, critical micelle concentration, drug loading content, entrapment efficiency, drug release, cytotoxicity, and stability in serum were evaluatedin vitroby using doxorubicin as the model anticancer drug. The micellar sizes ranged from 25 to 35 nm. The 7 : 3 and 5 : 5 micellar combinations had lower critical micelle concentrations ( M) than the 10 : 0 combination ( M). The entrapment efficiencies of the 7 : 3, 5 : 5, and 3 : 7 micellar combinations were 72%, 88%, and 69%, respectively. Doxorubicin release was greater at acidic tumour pH than at normal physiological pH. The doxorubicin-loaded mixed micelles showed greater percent inhibition and apoptosis activity in human breast adenocarcinoma (MCF-7) and...
PloS one, 2014
The present study was conducted with the aim to investigate the immuno-modulatory and histologica... more The present study was conducted with the aim to investigate the immuno-modulatory and histological stabilization effects of nanocarrier-based transcutaneous co-delivery of hydrocortisone (HC) and hydroxytyrosol (HT). In this investigation, the clinical and pharmacological efficacies of nanoparticle (NP)-based formulation to alleviate 2,4-dinitrofluorobenzene (DNFB)-induced atopic dermatitis (AD) was explored by using an NC/Nga mouse model. Ex vivo visual examination of AD induction in experimental mice indicated remarkable control of NP-based formulations in reducing pathological severity of AD-like skin lesions. Therapeutic effectiveness of NP-based formulations was also evaluated by comparing skin thickness of AD-induced NP-treated mice (456±27 µm) with that of atopic mice (916±37 µm). Analysis of the immuno-spectrum of AD also revealed the dominance of NP-based formulations in restraining immunoglobulin-E (IgE), histamine, prostaglandin-E2 (PGE2), vascular endothelial growth fact...
Nanoscale Research Letters, 2012
Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyet... more Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyethyleneimine (PEI) for the delivery of antitumor drugs. The CA-PEI copolymer was synthesized via pairing mediated by N,N’-dicyclohexylcarbodiimide and N-hydroxysuccinimide using dichloromethane as a solvent. Fourier transform infrared and nuclear magnetic resonance analyses were performed to verify the formation of an amide linkage between CA and PEI and doxorubicin localization into the copolymer. Dynamic light scattering and transmission electron microscopy studies revealed that the copolymer could self-assemble into micelles with a spherical morphology and an average diameter of <200 nm. The CA-PEI copolymer was also characterized by X-ray diffraction and differential scanning calorimetry. Doxorubicin-loaded micelles were prepared by dialysis method. A drug release study showed reduced drug release with escalating drug content. In a cytotoxicity assay using human colorectal adenocar...
Journal of Pharmacy and Pharmacology, Mar 17, 2014
Objectives The field of pharmaceutical technology is expanding rapidly because of the increasing ... more Objectives The field of pharmaceutical technology is expanding rapidly because of the increasing number of drug delivery options. Successful drug delivery is influenced by multiple factors, one of which is the appropriate identification of materials for research and engineering of new drug delivery systems. Bacterial cellulose (BC) is one such biopolymer that fulfils the criteria for consideration as a drug delivery material. Key findings BC showed versatility in terms of its potential for in-situ modulation, chemical modification after synthesis and application in the biomedical field, thus expanding the current, more limited view of BC and facilitating the investigation of its potential for application in drug delivery. Summary Cellulose, which is widely available in nature, has numerous applications. One of the applications is that of BC in the pharmaceutical and biomedical fields, where it has been primarily applied for transdermal formulations to improve clinical outcomes. This review takes a multidisciplinary approach to consideration of the feasibility and potential benefits of BC in the development of other drug delivery systems for various routes of administration.
Heliyon, 2019
Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to ... more Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
Pharmaceutical Sciences, 2016
Drug discovery today, Apr 23, 2016
The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding a... more The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy.
Journal of microencapsulation, Jan 26, 2016
Wounds that remain in the inflammatory phase for a prolonged period of time are likely to be colo... more Wounds that remain in the inflammatory phase for a prolonged period of time are likely to be colonised and infected by a range of commensal and pathogenic microorganisms. Treatment associated with these types of wounds mainly focuses on controlling infection and providing an optimum environment capable of facilitating re-epithelialisation, thus promoting wound healing. Hydrogels have attracted vast interest as moist wound-responsive dressing materials. In the current study, biosynthetic bacterial cellulose hydrogels synthesised by Gluconacetobacter xylinus and subsequently loaded with silver were characterised and investigated for their antimicrobial activity against two representative wound infecting pathogens, namely S. aureus and P. aeruginosa. Silver nitrate and silver zeolite provided the source of silver and loading parameters were optimised based on experimental findings. The results indicate that both AgNO3 and AgZ loaded biosynthetic hydrogels possess antimicrobial activity...
International Wound Journal, 2016
The increasing occurrence of hospital‐acquired infections and the emerging problems posed by anti... more The increasing occurrence of hospital‐acquired infections and the emerging problems posed by antibiotic‐resistant microbial strains have both contributed to the escalating cost of treatment. The presence of infection at the wound site can potentially stall the healing process at the inflammatory stage, leading to the development of a chronic wound. Traditional wound treatment regimes can no longer cope with the complications posed by antibiotic‐resistant strains; hence, there is a need to explore the use of alternative antimicrobial agents. Pre‐antibiotic compounds, including heavy metal ions and essential oils, have been re‐investigated for their potential use as effective antimicrobial agents. Essential oils have potent antimicrobial, antifungal, antiviral, anti‐inflammatory, antioxidant and other beneficial therapeutic properties. Similarly, heavy metal ions have also been used as disinfecting agents because of their broad spectrum activities. Both of these alternative antimicrob...
Materials Today, 2015
Therapeutics based on RNA interference mechanisms are highly promising for the management of seve... more Therapeutics based on RNA interference mechanisms are highly promising for the management of several diseases including multi-drug resistant cancers. However, effective delivery of siRNAs and oligonucleotides still remains challenging. In this regard, hyper-branched, PAMAM dendrimers having unique three-dimensional architecture and nanoscale size, with cationic surface charge can potentially serve as siRNA condensing agents as well as robust nano-vectors for targeted delivery. In addition, their surface functionality permits conjugation of drugs and genes or development of hybrid systems for combination therapy. Thus far, in vitro cellular testing of dendrimer-mediated siRNA delivery has revealed great potential, with reports on their in vivo effectiveness starting to appear. These favorable outcomes portend a promising future for dendrimer mediated RNAi therapeutics.
International Journal of Polymer Science, 2013
This study evaluated the effect of solubilized and dispersed bacterial cellulose (BC) on the phys... more This study evaluated the effect of solubilized and dispersed bacterial cellulose (BC) on the physicochemical characteristics and drug release profile of hydrogels synthesized using biopolymers. Superabsorbent hydrogels were synthesized by graft polymerization of acrylamide on BC solubilized in an NaOH/urea solvent system and on dispersed BC by usingN,N′-methylenebisacrylamide as a crosslinker under microwave irradiation. Fourier transform infrared spectroscopy analysis of the resulting hydrogels confirmed the grafting, and an X-ray diffraction pattern showed a decrease in the crystallinity of BC after the grafting process. The hydrogels exhibited pH and ionic responsive swelling behavior, with hydrogels prepared using solubilized BC (SH) having higher swelling ratios. Furthermore, compared to the hydrogels synthesized using dispersed BC, the hydrogels synthesized using solubilized BC showed higher porosity, drug loading efficiency, and release. These results suggest the superiority ...
Advances in Agricultural and Food Research Journal
The study presents the performance and potential of an evaporative-cooled storage system for the ... more The study presents the performance and potential of an evaporative-cooled storage system for the short-term storage of fruit vegetables during transportation. The evaporative cooler, storage unit, power supply, control panel, and real-time data monitoring system are the components of the evaporative-cooled storage system. In this study, the system performance was assessed in terms of the cooling profile of the storage unit (temperature and relative humidity profiles), and postharvest quality of the selected fruit vegetables (chili, tomato, and long bean) for the fresh market. Three storage treatments for the selected fruit vegetables were investigated, i.e., evaporative-cooled storage unit (T1), ambient room (T2), and cold room (T3). The average temperature inside the storage unit was T3 < T2 < T1. T1 demonstrated RH of > 90 %, in agreement with recommended RH for vegetable storage. Post-five-hour storage treatments, vegetables stored under T1 exhibited the least weight los...
Pharmaceutics
Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global he... more Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global health due to its high incidence, metastasis, and mortality rates. Despite numerous studies and favorable improvements in the therapeutic strategies over the past few decades, the prognosis of this disease remains dismal. Moreover, several drawbacks are associated with the conventional treatment; including permanent disfigurement and physical impairment that are attributed to surgical intervention, and systemic toxicity that results from aggressive radio- or chemotherapies, which impacts patients’ prognosis and post-treatment quality of life. The highly vascularized, non-keratinized oral mucosa appears as a potential route for cytotoxic drug administration in treating oral cancer. It acts as a non-invasive portal for drug entry targeting the local oral lesions of the early stages of cancer and the systemic metastasis sites of advanced cancer. The absorption of the poorly aqueous-soluble an...
Polymers, 2020
Various swelling drug delivery devices are promising materials for control drug delivery because ... more Various swelling drug delivery devices are promising materials for control drug delivery because of their ability to swell and release entrapped therapeutics, in response to physiological stimuli. Previously, many mathematical models have been developed to predict the mechanism of drug release from a swelling device. However, some of these models do not consider the changes in diffusion behaviour as the device swells. Therefore, we used a two-phase approach to simplify the mathematical model considering the effect of swelling on the diffusion coefficient. We began by defining a moving boundary problem to consider the swelling process. Landau transformation was used for mitigating the moving boundary problem. The transformed problem was analytically solved using the separation of variables method. Further, the analytical solution was extended to include the drug release in two phases where each phase has distinct diffusion coefficient and continuity condition was applied. The newly d...
Polymers, 2020
Improved physicochemical properties of chitosan-curcumin nanoparticulate carriers using microwave... more Improved physicochemical properties of chitosan-curcumin nanoparticulate carriers using microwave technology for skin burn wound application are reported. The microwave modified low molecular weight chitosan variant was used for nanoparticle formulation by ionic gelation method nanoparticles analyzed for their physicochemical properties. The antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa cultures, cytotoxicity and cell migration using human dermal fibroblasts—an adult cell line—were studied. The microwave modified chitosan variant had significantly reduced molecular weight, increased degree of deacetylation and decreased specific viscosity. The nanoparticles were nano-sized with high positive charge and good dispersibility with entrapment efficiency and drug content in between 99% and 100%, demonstrating almost no drug loss. Drug release was found to be sustained following Fickian the diffusion mechanism for drug release with higher cumulative drug r...
Scientific reports, Jan 13, 2018
Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound... more Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound dressing for partial-thickness burn wound. It is also a promising biomaterial cell carrier because it bears some resemblance to the natural soft tissue. This study assessed its ability to deliver human epidermal keratinocytes (EK) and dermal fibroblasts (DF) for the treatment of full-thickness skin lesions. In vitro studies demonstrated that BC/AA hydrogel had excellent cell attachment, maintained cell viability with limited migration, and allowed cell transfer. In vivo wound closure, histological, immunohistochemistry, and transmission electron microscopy evaluation revealed that hydrogel alone (HA) and hydrogel with cells (HC) accelerated wound healing compared to the untreated controls. Gross appearance and Masson's trichrome staining indicated that HC was better than HA. This study suggests the potential application of BC/AA hydrogel with dual functions, as a cell carrier and wo...
Drug delivery and translational research, Feb 4, 2016
Burn wound management is a complex process because the damage may extend as far as the dermis whi... more Burn wound management is a complex process because the damage may extend as far as the dermis which has an acknowledged slow rate of regeneration. This study investigates the feasibility of using hydrogel microparticles composed of bacterial cellulose and polyacrylamide as a dressing material for coverage of partial-thickness burn wounds. The microparticulate carrier structure and surface morphology were investigated by Fourier transform infrared, X-ray diffraction, elemental analysis, and scanning electron microscopy. The cytotoxicity profile of the microparticles showed cytocompatibility with L929 cells. Dermal irritation test demonstrated that the hydrogel was non-irritant to the skin and had a significant effect on wound contraction compared to the untreated group. Moreover, histological examination of in vivo burn healing samples revealed that the hydrogel treatment enhanced epithelialization and accelerated fibroblast proliferation with wound repair and intact skin achieved by...
Nanoscale Research Letters, 2016
This study developed novel triblock pH-responsive polymeric micelles (PMs) using cholic acid-poly... more This study developed novel triblock pH-responsive polymeric micelles (PMs) using cholic acid-polyethyleneiminepoly-L-arginine (CA-PEI-pArg) copolymers. PEI provided pH sensitivity, while the hydrophilic cell-penetrating pArg peptide promoted cellular PM internalization. The copolymers self-assembled into PMs in aqueous solution at above the critical micelle concentration (2.98 × 10 −7 M) and encapsulated doxorubicin in the core region, with a 34. 2% (w/w) entrapment efficiency. PMs showed pH-dependent swelling, increasing in size by almost sevenfold from pH 7.4 to 5.0. Doxorubicin release was pH-dependent, with about 65% released at pH 5.0, and 32% at pH 7.4. Cellular uptake, assessed by confocal microscopy and flow cytometry, was enhanced by using doxorubicin-loaded CA-PEI-pArg PMs, as compared to free doxorubicin and DOX-loaded CA-PEI PMs. Moreover, 24-h incubation of these PMs with a human breast cancer cell line produced greater cytotoxicity than free doxorubicin. These results indicate that pH-responsive CA-PEI-pArg micelles could provide a versatile delivery system for targeted cancer therapy using hydrophobic drugs.
Medicines, 2016
The emerging problems posed by antibiotic resistance complicate the treatment regime required for... more The emerging problems posed by antibiotic resistance complicate the treatment regime required for wound infections and are driving the need to develop more effective methods of wound management. There is growing interest in the use of alternative, broad spectrum, pre-antibiotic antimicrobial agents such as essential oils (e.g., tea tree oil, TTO) and metal ions (e.g., silver, Ag +). Both TTO and Ag + have broad spectrum antimicrobial activity and act on multiple target sites, hence reducing the likelihood of developing resistance. Combining such agents with responsive, controlled release delivery systems such as hydrogels may enhance microbiocidal activity and promote wound healing. The advantages of using chitosan to formulate the hydrogels include its biocompatible, mucoadhesive and controlled release properties. In this study, hydrogels loaded with TTO and Ag + exhibited antimicrobial activity against P. aeruginosa, S. aureus and C. albicans. Combining TTO and Ag + into the hydrogel further improved antimicrobial activity by lowering the effective concentrations required, respectively. This has obvious advantages for reducing the potential toxic effects on the healthy tissues surrounding the wound. These studies highlight the feasibility of delivering lower effective concentrations of antimicrobial agents such as TTO and Ag + in ionically crosslinked chitosan hydrogels to treat common wound-infecting pathogens.
International Journal of Nanomedicine, 2015
Background: Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating vario... more Background: Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (d-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. Methods: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue ® assay. Results: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.