Magni Mohr - Academia.edu (original) (raw)
Papers by Magni Mohr
Journal of the International Society of Sports Nutrition, 2015
Background: Sodium bicarbonate intake has been shown to improve exercise tolerance, but the effec... more Background: Sodium bicarbonate intake has been shown to improve exercise tolerance, but the effects on high-intensity intermittent exercise are less clear. Thus, the aim of the present study was to determine the effect of sodium bicarbonate intake on Yo-Yo intermittent recovery test level 2 performance in trained young men. Method: Thirteen men aged 23 ± 1 year (height: 180 ± 2 cm, weight: 78 ± 3 kg; VO 2 max: 61.3 ± 3.3 mlO 2 · kg −1 · min −1 ; means ± SEM) performed the Yo-Yo intermittent recovery test level 2 (Yo-Yo IR2) on two separate occasions in randomized order with (SBC) and without (CON) prior intake of sodium bicarbonate (0.4 g · kg −1 body weight). Heart rate and rating of perceived exertion (RPE) were measured during the test and venous blood samples were taken frequently. Results: Yo-Yo IR2 performance was 14 % higher (P = 0.04) in SBC than in CON (735 ± 61 vs 646 ± 46 m, respectively). Blood pH and bicarbonate were similar between trials at baseline, but higher (P = 0.003) immediately prior to the Yo-Yo IR2 test in SBC than in CON (7.44 ± 0.01 vs 7.32 ± 0.01 and 33.7 ± 3.2 vs 27.3 ± 0.6 mmol · l −1 , respectively). Blood lactate was 0.9 ± 0.1 and 0.8 ± 0.1 mmol · l −1 at baseline and increased to 11.3 ± 1.4 and 9.4 ± 0.8 mmol · l −1 at exhaustion in SBC and CON, respectively, being higher (P = 0.03) in SBC. Additionally, peak blood lactate was higher (P = 0.02) in SBC than in CON (11.7 ± 1.2 vs 10.2 ± 0.7 mmol · l −1 ). Blood glucose, plasma K + and Na + were not different between trials. Peak heart rate reached at exhaustion was 197 ± 3 and 195 ± 3 bpm in SBC and CON, respectively, with no difference between conditions. RPE was 7 % lower (P = 0.003) in SBC than in CON after 440 m, but similar at exhaustion (19.3 ± 0.2 and 19.5 ± 0.2). Conclusion: In conclusion, high-intensity intermittent exercise performance is improved by prior intake of sodium bicarbonate in trained young men, with concomitant elevations in blood alkalosis and peak blood lactate levels, as well as lowered rating of perceived exertion.
Amer J Physiol Regul Integr C, 2006
This study examined the effect of two different intense exercise training regimens on skeletal mu... more This study examined the effect of two different intense exercise training regimens on skeletal muscle ion transport systems, performance, and metabolic response to exercise. Thirteen subjects performed either sprint training [ST; 6-s sprints (n = 6)], or speed endurance training [SET; 30-s runs approximately 130% Vo(2 max), n = 7]. Training in the SET group provoked higher (P < 0.05) plasma K(+) levels and muscle lactate/H(+) accumulation. Only in the SET group was the amount of the Na(+)/H(+) exchanger isoform 1 (31%) and Na(+)-K(+)-ATPase isoform alpha(2) (68%) elevated (P < 0.05) after training. Both groups had higher (P < 0.05) levels of Na(+)-K(+)-ATPase beta(1)-isoform and monocarboxylate transporter 1 (MCT1), but no change in MCT4 and Na(+)-K(+)-ATPase alpha(1)-isoform. Both groups had greater (P < 0.05) accumulation of lactate during exhaustive exercise and higher (P < 0.05) rates of muscle lactate decrease after exercise. The ST group improved (P < 0.05) sprint performance, whereas the SET group elevated (P < 0.05) performance during exhaustive continuous treadmill running. Improvement in the Yo-Yo intermittent recovery test was larger (P < 0.05) in the SET than ST group (29% vs. 10%). Only the SET group had a decrease (P < 0.05) in fatigue index during a repeated sprint test. In conclusion, turnover of lactate/H(+) and K(+) in muscle during exercise does affect the adaptations of some but not all related muscle ion transport proteins with training. Adaptations with training do have an effect on the metabolic response to exercise and specific improvement in work capacity.
The Faseb Journal, Apr 1, 2012
Medicine and Science in Sports and Exercise, Jun 1, 2006
To examine muscle and blood metabolites during soccer match play and relate it to possible change... more To examine muscle and blood metabolites during soccer match play and relate it to possible changes in sprint performance. Thirty-one Danish fourth division players took part in three friendly games. Blood samples were collected frequently during the game, and muscle biopsies were taken before and after the game as well as immediately after an intense period in each half. The players performed five 30-m sprints interspersed by 25-s recovery periods before the game and immediately after each half (N=11) or after an intense exercise period in each half (N=20). Muscle lactate was 15.9+/-1.9 and 16.9+/-2.3 mmol.kg d.w. during the first and second halves, respectively, with blood lactate being 6.0+/-0.4 and 5.0+/-0.4 mM, respectively. Muscle lactate was not correlated with blood lactate (r=0.06-0.25, P>0.05). Muscle glycogen decreased (P<0.05) from 449+/-23 to 255+/-22 mmol.kg d.w. during the game, with 47+/-7% of the muscle fibers being completely or almost empty of glycogen after the game. Blood glucose remained elevated during the game, whereas plasma FFA increased (P<0.05) from 0.45+/-0.05 to 1.37+/-0.23 mM. Mean sprint time was unaltered after the first half, but longer (P<0.05) after the game (2.8+/-0.7%) as well as after intense periods in the first (1.6+/-0.6%) and second halves (3.6+/-0.5%). The decline in sprint performance during the game was not correlated with muscle lactate, muscle pH, or total glycogen content. Sprint performance is reduced both temporarily during a game and at the end of a soccer game. The latter finding may be explained by low glycogen levels in individual muscle fibers. Blood lactate is a poor indicator of muscle lactate during soccer match play.
Http Dx Doi Org 10 1080 02640410903428525, 2010
Using a video-based time-motion analysis system, a semi-automatic multiple-camera system, and two... more Using a video-based time-motion analysis system, a semi-automatic multiple-camera system, and two commercially available GPS systems (GPS-1; 5 Hz and GPS-2; 1 Hz), we compared activity pattern and fatigue development in the same football match. Twenty football players competing in the Spanish second and third divisions participated in the study. Total distance covered during the match for the four systems was as follows: 10.83 + or - 0.77 km (semi-automatic multiple-camera system, n = 20), 9.51 + or - 0.74 km (video-based time-motion analysis system, n = 17), 10.72 + or - 0.70 km (GPS-1, n = 18), and 9.52 + or - 0.89 km (GPS-2, n = 13). Distance covered by high-intensity running for the four systems was as follows: 2.65 + or - 0.53 km (semi-automatic multiple-camera system), 1.61 + or - 0.37 km (video-based time-motion analysing system), 2.03 + or - 0.60 km (GPS-1), and 1.66 + or - 0.44 km (GPS-2). Distance covered by sprinting for the four systems was as follows: 0.38 + or - 0.18 km (semi-automatic multiple-camera system), 0.42 + or - 0.17 km (video-based time-motion analysing system), 0.37 + or - 0.19 km (GPS-1), and 0.23 + or - 0.16 km (GPS-2). All four systems demonstrated greater (P < 0.05) total distance covered and high-intensity running in the first 15-min period and less (P < 0.05) total distance covered and high-intensity running during the last 15-min period than all other 15-min intervals, with a reduction (P < 0.05) in high-intensity running from the first to the last 15-min period of 46 + or - 19%, 37 + or - 26%, 50 + or - 26%, and 45 + or - 27% for the semi-automatic multiple-camera system, video-based time-motion analysis system, GPS-1, and GPS-2, respectively. Our results show that the four systems were able to detect similar performance decrements during a football game and can be used to study game-induced fatigue. Rather large between-system differences were present in the determination of the absolute distances covered, meaning that any comparisons of results between different match analysis systems should be done with caution.
European Journal of Applied Physiology, 2015
To examine how match performance parameters in trained footballers relate to skeletal muscle para... more To examine how match performance parameters in trained footballers relate to skeletal muscle parameters, sprint ability and intermittent exercise performance. 19 male elite football players completed an experimental game with physical performance determined by video analysis and exercise capacity assessed by intermittent Yo-Yo IR1 and IR2 tests, and a repeated sprint test (RST). Muscle tissue was obtained for analysis of metabolic enzyme maximal activity and key muscle protein expression. Total game distance, distance deficit from first to second half and high-intensity running in the final 15 min of the game were all correlated to the players' Yo-Yo IR1 performance (r = 0.55-0.87) and beta-hydroxyacyl-CoA-dehydrogenase (HAD) maximal activity (r = 0.55-0.65). Furthermore, platelet/endothelial cell adhesion molecule-1 (PECAM1) protein expression was weakly (r = 0.46) correlated to total game distance. Peak 5-min game distance faster than 21 km h(-1) was related to the Na(+)-K(+) ATPase subunit (α1, α2, β1 and FXYD1) protein levels (r = 0.54-0.70), while Yo-Yo IR2 performance explained 40 % of the variance in high-intensity game distance. Total and 1-min peak sprint distance correlated to myosin heavy chain II/I ratio (MHCII/I ratio) and sarcoendoplasmic reticulum Ca(2+) ATPase isoform-1 (SERCA1) protein (r = 0.56-0.86), while phosphofructokinase (PFK) maximal activity also correlated to total sprint distance (r = 0.46). The findings emphasize the complexity of parameters predicting physical football performance with Yo-Yo IR1 and HAD as the best predictors of total distance, while high expression of Na(+)-K(+) ATPase proteins and the Yo-Yo IR2 test are better predictors of high-intensity performance. Finally, sprint performance relates to skeletal muscle fiber-type composition.
European journal of applied physiology, Jan 16, 2015
We examined effects of a three-game, 1-week microcycle (G1, G2, G3) on recovery of performance an... more We examined effects of a three-game, 1-week microcycle (G1, G2, G3) on recovery of performance and inflammatory responses in professional male footballers. Players were randomized into an experimental (EXP; N = 20) and a control group (CON; N = 20). Blood was drawn and repeated sprint ability (RSA), muscle soreness and knee range of motion (KJRM) were determined pre- and post-games and during recovery. High-intensity running during G2 was 7-14 % less compared to G1 and G3. RSA declined in EXP by 2-9 % 3 days post-game with G2 causing the greatest performance impairment. In EXP, game play increased muscle soreness (~sevenfold) compared to CON with G2 inducing the greatest rise, while KJRM was attenuated post-game in EXP compared to CON (5-7 %) and recovered slower post G2 and G3 than G1. CK, CRP, sVCAM-1, sP-Selectin and cortisol peaked 48 h post-games with G2 eliciting the greatest increase. Leukocyte count, testosterone, IL-1β and IL6 responses, although altered 24 h post each game...
PLOS ONE, 2015
The purpose of this study was to determine the effects of recreational soccer (SOC) compared to m... more The purpose of this study was to determine the effects of recreational soccer (SOC) compared to moderate-intensity continuous running (RUN) on all health-related physical fitness components in healthy untrained men. Sixty-nine participants were recruited and randomly assigned to one of three groups, of which sixty-four completed the study: a soccer training group (SOC; n = 20, 34±4 (means±SD) years, 78.1±8.3 kg, 179±4 cm); a running group (RUN; n = 21, 32±4 years, 78.0±5.5 kg, 179±7 cm); or a passive control group (CON; n = 23, 30±3 years, 76.6±12.0 kg, 178±8 cm). The training intervention lasted 12 weeks and consisted of three 60-min sessions per week. All participants were tested for each of the following physical fitness components: maximal aerobic power, minute ventilation, maximal heart rate, squat jump (SJ), countermovement jump with arm swing (CMJ), sit-and-reach flexibility, and body composition. Over the 12 weeks, VO 2 max relative to body weight increased more (p<0.05) in SOC (24.2%, ES = 1.20) and RUN (21.5%, ES = 1.17) than in CON (-5.0%, ES = -0.24), partly due to large changes in body mass (-5.9, -5.7 and +2.6 kg, p<0.05 for SOC, RUN and CON, respectively). Over the 12 weeks, SJ and CMJ performance increased more (p<0.05) in SOC (14.8 and 12.1%, ES = 1.08 and 0.81) than in RUN (3.3 and 3.0%, ES = 0.23 and 0.19) and CON (0.3 and 0.2%), while flexibility also increased more (p<0.05) in SOC (94%, ES = 0.97) than in RUN and CON (0-2%). In conclusion, untrained men displayed marked improvements in maximal aerobic power after 12 weeks of soccer training and moderate-intensity running, partly due to large decreases in body mass. Additionally soccer training induced pronounced positive effects on jump performance and flexibility, making soccer an effective broad-spectrum fitness training intervention.
European Journal of Applied Physiology, 2015
no changes in MS, HS and C. The intervention-induced increase in SOC was larger (P < 0.05) than i... more no changes in MS, HS and C. The intervention-induced increase in SOC was larger (P < 0.05) than in MS, HS and C. In SOC, leg BMC increased (P < 0.05) by 3.1 ± 4.5 %, with a larger increase in SOC than in C. Femoral shaft and trochanter bone mineral density (BMD) increased (P < 0.05) by 1.7 ± 1.9 and 2.4 ± 2.9 %, respectively, in SOC, with a greater (P < 0.05) change in SOC than in MS and C, whereas total body and total leg BMD did not change in any of the groups. Conclusion In conclusion, 15 weeks of soccer training with sedentary middle-aged women caused marked increases in bone turnover markers, with concomitant increases in leg bone mass. No changes in bone formation and resorption markers were seen after prolonged submaximal or high-intensity intermittent swimming training. Thus, soccer training appears to provide a powerful osteogenic stimulus in middle-aged women.
European Journal of Applied Physiology, 2015
We examined effects of a three-game, 1-week microcycle (G1, G2, G3) on recovery of performance an... more We examined effects of a three-game, 1-week microcycle (G1, G2, G3) on recovery of performance and inflammatory responses in professional male footballers. Players were randomized into an experimental (EXP; N = 20) and a control group (CON; N = 20). Blood was drawn and repeated sprint ability (RSA), muscle soreness and knee range of motion (KJRM) were determined pre- and post-games and during recovery. High-intensity running during G2 was 7-14 % less compared to G1 and G3. RSA declined in EXP by 2-9 % 3 days post-game with G2 causing the greatest performance impairment. In EXP, game play increased muscle soreness (~sevenfold) compared to CON with G2 inducing the greatest rise, while KJRM was attenuated post-game in EXP compared to CON (5-7 %) and recovered slower post G2 and G3 than G1. CK, CRP, sVCAM-1, sP-Selectin and cortisol peaked 48 h post-games with G2 eliciting the greatest increase. Leukocyte count, testosterone, IL-1β and IL6 responses, although altered 24 h post each game, were comparable among games. Plasma TBARS and protein carbonyls rose by ~50 % post-games with G2 eliciting the greatest increase 48 h of recovery. Reduced to oxidized glutathione ratio declined for 24 h post all games with G2 displaying the slowest recovery. Total antioxidant capacity and glutathione peroxidase activity increased (9-56 %) for 48 h in response to game play. In summary, post-game performance recovery and inflammatory adaptations in response to a three-game weekly microcycle displayed a different response pattern, with strong indications of a largest physiological stress and fatigue after the middle game that was preceded by only a 3-day recovery.
Scandinavian Journal of Medicine & Science in Sports, 2015
We assessed neuromuscular fatigue and recovery of the plantar flexors after playing football with... more We assessed neuromuscular fatigue and recovery of the plantar flexors after playing football with or without severe heat stress. Neuromuscular characteristics of the plantar flexors were assessed in 17 male players at baseline and ∼30 min, 24, and 48 h after two 90-min football matches in temperate (∼20°C and 55% rH) and hot (∼43°C and 20% rH) environments. Measurements included maximal voluntary strength, muscle activation, twitch contractile properties, and rate of torque development and soleus EMG (i.e., root mean square activity) rise from 0 to 30, −50, −100, and −200 ms during maximal isometric contractions for plantar flexors. Voluntary activation and peak twitch torque were equally reduced (−1.5% and −16.5%, respectively; P < 0.05) post-matches relative to baseline in both conditions, the latter persisting for at least 48 h, whereas strength losses (∼5%) were not significant. Absolute explosive force production declined (P < 0.05) 30 ms after contraction onset independently of condition, with no change at any other epochs. Globally, normalized rate of force development and soleus EMG activity rise values remained unchanged. In football, match-induced alterations in maximal and rapid torque production capacities of the plantar flexors are moderate and do not differ after competing in temperate and hot environments.
Fatigue develops temporarily during the most intense periods of a football game, as well as towar... more Fatigue develops temporarily during the most intense periods of a football game, as well as towards the end of a game, and the two types of fatigue are related to different physiological systems.
PLOS ONE, 2015
[This corrects the article DOI: 10.1371/journal.pone.0128072.].
Journal of Sports Sciences, 2015
We examined the temporal variation of iron&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;am... more We examined the temporal variation of iron&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s status markers during a 60 h period following a football game. Thirty-four male football players were randomly assigned to a control group (CG, N = 14, participated only in measurements and training) or an experimental group (EG, N = 20, took part in a football game one week after the completion of the competitive season). All participants trained regularly for two consecutive days after the game. Training and game load was monitored with high time-resolution global positioning system (GPS) devices. Blood samples were collected and muscle damage markers and repeated sprint ability (RSA) were assessed pre-game and at 2 h, 12 h 36 h and 60 h post-game. No changes were noted in CG. Iron concentration decreased (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) 2 h post-game and normalised thereafter whereas total iron binding capacity increased (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) 12-60 h of recovery (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05). Erythrocytes, haemoglobin (HGB) concentration, plasma volume, haematocrit, mean cell volume, mean cell HGB, mean cell HGB concentration, red cell width-SD, red cell width-CV, ferritin concentration and transferrin saturation remained unaltered during the intervention period. Creatine kinase activity and muscle soreness increased (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) throughout recovery in EG. RSA declined (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) until 36 h of recovery and normalised thereafter. Our data demonstrate that iron status markers are only transiently affected by a football game.
PLOS ONE, 2015
We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and exten... more We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KF ecc /KE con ) and conventional (KF con /KE con ) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players' physical conditioning level.
Journal of Strength and Conditioning Research, 2015
Krustrup, P and Mohr, M. Physical demands in competitive ultimate Frisbee. J Strength Cond Res 29... more Krustrup, P and Mohr, M. Physical demands in competitive ultimate Frisbee. J Strength Cond Res 29(12): 3386-3391, 2015-The objective was to study game demands in competitive ultimate Frisbee by performing match analysis during a game. Thirteen moderately trained (Yo-Yo intermittent recovery test levels 1 and 2 [Yo-Yo IR1 and IR2] performance: 1790 ± 382 m and 657 ± 225 m, respectively) competitive male ultimate Frisbee athletes played a game in which activity profile using Global Positioning System (GPS) technology and heart rate (HR) were recorded. Game HRmean and HRpeak were 82 ± 2% and 99 ± 1% of maximum heart rate, respectively. Total game distance was 4.70 ± 0.47 km, of which 0.63 ± 0.14 km was high-intensity running and 0.21 ± 0.11 km was sprinting. In the second half, 10% less (p ≤ 0.05) ground was covered with high-intensity running compared with the first half (0.28 ± 0.08 km vs. 0.31 ± 0.07 km). Less (43-47%; p ≤ 0.05) high-intensity running was performed in the third 9-minute period of each half compared with the first two 9-minute periods of the same half. Players performed 17.4 ± 5.7 sprints during the match. Yo-Yo IR2 performance correlated to the amount of high-intensity running in the last 9 minutes of both halves (r = 0.69, p ≤ 0.05), whereas Yo-Yo IR1 performance correlated with total sprint distance (r = 0.74, p ≤ 0.05). Ultimate Frisbee is an intense intermittent team sport with high cardiovascular loading and clear indications of fatigue toward the end of each half. Yo-Yo IR test performances correlate with physical match performance.
Journal of the International Society of Sports Nutrition, 2015
Caffeine and sodium bicarbonate ingestion have been suggested to improve high-intensity intermitt... more Caffeine and sodium bicarbonate ingestion have been suggested to improve high-intensity intermittent exercise, but it is unclear if these ergogenic substances affect performance under provoked metabolic acidification. To study the effects of caffeine and sodium bicarbonate on intense intermittent exercise performance and metabolic markers under exercise-induced acidification, intense arm-cranking exercise was performed prior to intense intermittent running after intake of placebo, caffeine and sodium bicarbonate. Male team-sports athletes (n = 12) ingested sodium bicarbonate (NaHCO3; 0.4 g.kg(-1) b.w.), caffeine (CAF; 6 mg.kg(-1) b.w.) or placebo (PLA) on three different occasions. Thereafter, participants engaged in intense arm exercise prior to the Yo-Yo intermittent recovery test level-2 (Yo-Yo IR2). Heart rate, blood lactate and glucose as well as rating of perceived exertion (RPE) were determined during the protocol. CAF and NaHCO3 elicited a 14 and 23% improvement (P < 0.05...
JIMD reports, 2015
Primary carnitine deficiency (PCD) is a disorder of fatty acid oxidation with a high prevalence i... more Primary carnitine deficiency (PCD) is a disorder of fatty acid oxidation with a high prevalence in the Faroe Islands. Only patients homozygous for the c.95A>G (p.N32S) mutation have displayed severe symptoms in the Faroese patient cohort. In this study, we investigated carnitine levels in skeletal muscle, plasma, and urine as well as renal elimination kinetics before and after intermission with L-carnitine in patients homozygous for c.95A>G. Five male patients homozygous for c.95A>G were included. Regular L-carnitine supplementation was stopped and the patients were observed during five days. Blood and urine were collected throughout the study. Skeletal muscle biopsies were obtained at 0, 48, and 96 h. Mean skeletal muscle free carnitine before discontinuation of L-carnitine was low, 158 nmol/g (SD 47.4) or 5.4% of normal. Mean free carnitine in plasma (fC0) dropped from 38.7 (SD 20.4) to 6.3 (SD 1.7) μmol/L within 96 h (p < 0.05). Mean T 1/2 following oral supplementati...
Journal of the International Society of Sports Nutrition, 2015
Background: Sodium bicarbonate intake has been shown to improve exercise tolerance, but the effec... more Background: Sodium bicarbonate intake has been shown to improve exercise tolerance, but the effects on high-intensity intermittent exercise are less clear. Thus, the aim of the present study was to determine the effect of sodium bicarbonate intake on Yo-Yo intermittent recovery test level 2 performance in trained young men. Method: Thirteen men aged 23 ± 1 year (height: 180 ± 2 cm, weight: 78 ± 3 kg; VO 2 max: 61.3 ± 3.3 mlO 2 · kg −1 · min −1 ; means ± SEM) performed the Yo-Yo intermittent recovery test level 2 (Yo-Yo IR2) on two separate occasions in randomized order with (SBC) and without (CON) prior intake of sodium bicarbonate (0.4 g · kg −1 body weight). Heart rate and rating of perceived exertion (RPE) were measured during the test and venous blood samples were taken frequently. Results: Yo-Yo IR2 performance was 14 % higher (P = 0.04) in SBC than in CON (735 ± 61 vs 646 ± 46 m, respectively). Blood pH and bicarbonate were similar between trials at baseline, but higher (P = 0.003) immediately prior to the Yo-Yo IR2 test in SBC than in CON (7.44 ± 0.01 vs 7.32 ± 0.01 and 33.7 ± 3.2 vs 27.3 ± 0.6 mmol · l −1 , respectively). Blood lactate was 0.9 ± 0.1 and 0.8 ± 0.1 mmol · l −1 at baseline and increased to 11.3 ± 1.4 and 9.4 ± 0.8 mmol · l −1 at exhaustion in SBC and CON, respectively, being higher (P = 0.03) in SBC. Additionally, peak blood lactate was higher (P = 0.02) in SBC than in CON (11.7 ± 1.2 vs 10.2 ± 0.7 mmol · l −1 ). Blood glucose, plasma K + and Na + were not different between trials. Peak heart rate reached at exhaustion was 197 ± 3 and 195 ± 3 bpm in SBC and CON, respectively, with no difference between conditions. RPE was 7 % lower (P = 0.003) in SBC than in CON after 440 m, but similar at exhaustion (19.3 ± 0.2 and 19.5 ± 0.2). Conclusion: In conclusion, high-intensity intermittent exercise performance is improved by prior intake of sodium bicarbonate in trained young men, with concomitant elevations in blood alkalosis and peak blood lactate levels, as well as lowered rating of perceived exertion.
Amer J Physiol Regul Integr C, 2006
This study examined the effect of two different intense exercise training regimens on skeletal mu... more This study examined the effect of two different intense exercise training regimens on skeletal muscle ion transport systems, performance, and metabolic response to exercise. Thirteen subjects performed either sprint training [ST; 6-s sprints (n = 6)], or speed endurance training [SET; 30-s runs approximately 130% Vo(2 max), n = 7]. Training in the SET group provoked higher (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) plasma K(+) levels and muscle lactate/H(+) accumulation. Only in the SET group was the amount of the Na(+)/H(+) exchanger isoform 1 (31%) and Na(+)-K(+)-ATPase isoform alpha(2) (68%) elevated (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) after training. Both groups had higher (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) levels of Na(+)-K(+)-ATPase beta(1)-isoform and monocarboxylate transporter 1 (MCT1), but no change in MCT4 and Na(+)-K(+)-ATPase alpha(1)-isoform. Both groups had greater (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) accumulation of lactate during exhaustive exercise and higher (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) rates of muscle lactate decrease after exercise. The ST group improved (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) sprint performance, whereas the SET group elevated (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) performance during exhaustive continuous treadmill running. Improvement in the Yo-Yo intermittent recovery test was larger (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) in the SET than ST group (29% vs. 10%). Only the SET group had a decrease (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) in fatigue index during a repeated sprint test. In conclusion, turnover of lactate/H(+) and K(+) in muscle during exercise does affect the adaptations of some but not all related muscle ion transport proteins with training. Adaptations with training do have an effect on the metabolic response to exercise and specific improvement in work capacity.
The Faseb Journal, Apr 1, 2012
Medicine and Science in Sports and Exercise, Jun 1, 2006
To examine muscle and blood metabolites during soccer match play and relate it to possible change... more To examine muscle and blood metabolites during soccer match play and relate it to possible changes in sprint performance. Thirty-one Danish fourth division players took part in three friendly games. Blood samples were collected frequently during the game, and muscle biopsies were taken before and after the game as well as immediately after an intense period in each half. The players performed five 30-m sprints interspersed by 25-s recovery periods before the game and immediately after each half (N=11) or after an intense exercise period in each half (N=20). Muscle lactate was 15.9+/-1.9 and 16.9+/-2.3 mmol.kg d.w. during the first and second halves, respectively, with blood lactate being 6.0+/-0.4 and 5.0+/-0.4 mM, respectively. Muscle lactate was not correlated with blood lactate (r=0.06-0.25, P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;0.05). Muscle glycogen decreased (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05) from 449+/-23 to 255+/-22 mmol.kg d.w. during the game, with 47+/-7% of the muscle fibers being completely or almost empty of glycogen after the game. Blood glucose remained elevated during the game, whereas plasma FFA increased (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05) from 0.45+/-0.05 to 1.37+/-0.23 mM. Mean sprint time was unaltered after the first half, but longer (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05) after the game (2.8+/-0.7%) as well as after intense periods in the first (1.6+/-0.6%) and second halves (3.6+/-0.5%). The decline in sprint performance during the game was not correlated with muscle lactate, muscle pH, or total glycogen content. Sprint performance is reduced both temporarily during a game and at the end of a soccer game. The latter finding may be explained by low glycogen levels in individual muscle fibers. Blood lactate is a poor indicator of muscle lactate during soccer match play.
Http Dx Doi Org 10 1080 02640410903428525, 2010
Using a video-based time-motion analysis system, a semi-automatic multiple-camera system, and two... more Using a video-based time-motion analysis system, a semi-automatic multiple-camera system, and two commercially available GPS systems (GPS-1; 5 Hz and GPS-2; 1 Hz), we compared activity pattern and fatigue development in the same football match. Twenty football players competing in the Spanish second and third divisions participated in the study. Total distance covered during the match for the four systems was as follows: 10.83 + or - 0.77 km (semi-automatic multiple-camera system, n = 20), 9.51 + or - 0.74 km (video-based time-motion analysis system, n = 17), 10.72 + or - 0.70 km (GPS-1, n = 18), and 9.52 + or - 0.89 km (GPS-2, n = 13). Distance covered by high-intensity running for the four systems was as follows: 2.65 + or - 0.53 km (semi-automatic multiple-camera system), 1.61 + or - 0.37 km (video-based time-motion analysing system), 2.03 + or - 0.60 km (GPS-1), and 1.66 + or - 0.44 km (GPS-2). Distance covered by sprinting for the four systems was as follows: 0.38 + or - 0.18 km (semi-automatic multiple-camera system), 0.42 + or - 0.17 km (video-based time-motion analysing system), 0.37 + or - 0.19 km (GPS-1), and 0.23 + or - 0.16 km (GPS-2). All four systems demonstrated greater (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) total distance covered and high-intensity running in the first 15-min period and less (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) total distance covered and high-intensity running during the last 15-min period than all other 15-min intervals, with a reduction (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) in high-intensity running from the first to the last 15-min period of 46 + or - 19%, 37 + or - 26%, 50 + or - 26%, and 45 + or - 27% for the semi-automatic multiple-camera system, video-based time-motion analysis system, GPS-1, and GPS-2, respectively. Our results show that the four systems were able to detect similar performance decrements during a football game and can be used to study game-induced fatigue. Rather large between-system differences were present in the determination of the absolute distances covered, meaning that any comparisons of results between different match analysis systems should be done with caution.
European Journal of Applied Physiology, 2015
To examine how match performance parameters in trained footballers relate to skeletal muscle para... more To examine how match performance parameters in trained footballers relate to skeletal muscle parameters, sprint ability and intermittent exercise performance. 19 male elite football players completed an experimental game with physical performance determined by video analysis and exercise capacity assessed by intermittent Yo-Yo IR1 and IR2 tests, and a repeated sprint test (RST). Muscle tissue was obtained for analysis of metabolic enzyme maximal activity and key muscle protein expression. Total game distance, distance deficit from first to second half and high-intensity running in the final 15 min of the game were all correlated to the players' Yo-Yo IR1 performance (r = 0.55-0.87) and beta-hydroxyacyl-CoA-dehydrogenase (HAD) maximal activity (r = 0.55-0.65). Furthermore, platelet/endothelial cell adhesion molecule-1 (PECAM1) protein expression was weakly (r = 0.46) correlated to total game distance. Peak 5-min game distance faster than 21 km h(-1) was related to the Na(+)-K(+) ATPase subunit (α1, α2, β1 and FXYD1) protein levels (r = 0.54-0.70), while Yo-Yo IR2 performance explained 40 % of the variance in high-intensity game distance. Total and 1-min peak sprint distance correlated to myosin heavy chain II/I ratio (MHCII/I ratio) and sarcoendoplasmic reticulum Ca(2+) ATPase isoform-1 (SERCA1) protein (r = 0.56-0.86), while phosphofructokinase (PFK) maximal activity also correlated to total sprint distance (r = 0.46). The findings emphasize the complexity of parameters predicting physical football performance with Yo-Yo IR1 and HAD as the best predictors of total distance, while high expression of Na(+)-K(+) ATPase proteins and the Yo-Yo IR2 test are better predictors of high-intensity performance. Finally, sprint performance relates to skeletal muscle fiber-type composition.
European journal of applied physiology, Jan 16, 2015
We examined effects of a three-game, 1-week microcycle (G1, G2, G3) on recovery of performance an... more We examined effects of a three-game, 1-week microcycle (G1, G2, G3) on recovery of performance and inflammatory responses in professional male footballers. Players were randomized into an experimental (EXP; N = 20) and a control group (CON; N = 20). Blood was drawn and repeated sprint ability (RSA), muscle soreness and knee range of motion (KJRM) were determined pre- and post-games and during recovery. High-intensity running during G2 was 7-14 % less compared to G1 and G3. RSA declined in EXP by 2-9 % 3 days post-game with G2 causing the greatest performance impairment. In EXP, game play increased muscle soreness (~sevenfold) compared to CON with G2 inducing the greatest rise, while KJRM was attenuated post-game in EXP compared to CON (5-7 %) and recovered slower post G2 and G3 than G1. CK, CRP, sVCAM-1, sP-Selectin and cortisol peaked 48 h post-games with G2 eliciting the greatest increase. Leukocyte count, testosterone, IL-1β and IL6 responses, although altered 24 h post each game...
PLOS ONE, 2015
The purpose of this study was to determine the effects of recreational soccer (SOC) compared to m... more The purpose of this study was to determine the effects of recreational soccer (SOC) compared to moderate-intensity continuous running (RUN) on all health-related physical fitness components in healthy untrained men. Sixty-nine participants were recruited and randomly assigned to one of three groups, of which sixty-four completed the study: a soccer training group (SOC; n = 20, 34±4 (means±SD) years, 78.1±8.3 kg, 179±4 cm); a running group (RUN; n = 21, 32±4 years, 78.0±5.5 kg, 179±7 cm); or a passive control group (CON; n = 23, 30±3 years, 76.6±12.0 kg, 178±8 cm). The training intervention lasted 12 weeks and consisted of three 60-min sessions per week. All participants were tested for each of the following physical fitness components: maximal aerobic power, minute ventilation, maximal heart rate, squat jump (SJ), countermovement jump with arm swing (CMJ), sit-and-reach flexibility, and body composition. Over the 12 weeks, VO 2 max relative to body weight increased more (p<0.05) in SOC (24.2%, ES = 1.20) and RUN (21.5%, ES = 1.17) than in CON (-5.0%, ES = -0.24), partly due to large changes in body mass (-5.9, -5.7 and +2.6 kg, p<0.05 for SOC, RUN and CON, respectively). Over the 12 weeks, SJ and CMJ performance increased more (p<0.05) in SOC (14.8 and 12.1%, ES = 1.08 and 0.81) than in RUN (3.3 and 3.0%, ES = 0.23 and 0.19) and CON (0.3 and 0.2%), while flexibility also increased more (p<0.05) in SOC (94%, ES = 0.97) than in RUN and CON (0-2%). In conclusion, untrained men displayed marked improvements in maximal aerobic power after 12 weeks of soccer training and moderate-intensity running, partly due to large decreases in body mass. Additionally soccer training induced pronounced positive effects on jump performance and flexibility, making soccer an effective broad-spectrum fitness training intervention.
European Journal of Applied Physiology, 2015
no changes in MS, HS and C. The intervention-induced increase in SOC was larger (P < 0.05) than i... more no changes in MS, HS and C. The intervention-induced increase in SOC was larger (P < 0.05) than in MS, HS and C. In SOC, leg BMC increased (P < 0.05) by 3.1 ± 4.5 %, with a larger increase in SOC than in C. Femoral shaft and trochanter bone mineral density (BMD) increased (P < 0.05) by 1.7 ± 1.9 and 2.4 ± 2.9 %, respectively, in SOC, with a greater (P < 0.05) change in SOC than in MS and C, whereas total body and total leg BMD did not change in any of the groups. Conclusion In conclusion, 15 weeks of soccer training with sedentary middle-aged women caused marked increases in bone turnover markers, with concomitant increases in leg bone mass. No changes in bone formation and resorption markers were seen after prolonged submaximal or high-intensity intermittent swimming training. Thus, soccer training appears to provide a powerful osteogenic stimulus in middle-aged women.
European Journal of Applied Physiology, 2015
We examined effects of a three-game, 1-week microcycle (G1, G2, G3) on recovery of performance an... more We examined effects of a three-game, 1-week microcycle (G1, G2, G3) on recovery of performance and inflammatory responses in professional male footballers. Players were randomized into an experimental (EXP; N = 20) and a control group (CON; N = 20). Blood was drawn and repeated sprint ability (RSA), muscle soreness and knee range of motion (KJRM) were determined pre- and post-games and during recovery. High-intensity running during G2 was 7-14 % less compared to G1 and G3. RSA declined in EXP by 2-9 % 3 days post-game with G2 causing the greatest performance impairment. In EXP, game play increased muscle soreness (~sevenfold) compared to CON with G2 inducing the greatest rise, while KJRM was attenuated post-game in EXP compared to CON (5-7 %) and recovered slower post G2 and G3 than G1. CK, CRP, sVCAM-1, sP-Selectin and cortisol peaked 48 h post-games with G2 eliciting the greatest increase. Leukocyte count, testosterone, IL-1β and IL6 responses, although altered 24 h post each game, were comparable among games. Plasma TBARS and protein carbonyls rose by ~50 % post-games with G2 eliciting the greatest increase 48 h of recovery. Reduced to oxidized glutathione ratio declined for 24 h post all games with G2 displaying the slowest recovery. Total antioxidant capacity and glutathione peroxidase activity increased (9-56 %) for 48 h in response to game play. In summary, post-game performance recovery and inflammatory adaptations in response to a three-game weekly microcycle displayed a different response pattern, with strong indications of a largest physiological stress and fatigue after the middle game that was preceded by only a 3-day recovery.
Scandinavian Journal of Medicine & Science in Sports, 2015
We assessed neuromuscular fatigue and recovery of the plantar flexors after playing football with... more We assessed neuromuscular fatigue and recovery of the plantar flexors after playing football with or without severe heat stress. Neuromuscular characteristics of the plantar flexors were assessed in 17 male players at baseline and ∼30 min, 24, and 48 h after two 90-min football matches in temperate (∼20°C and 55% rH) and hot (∼43°C and 20% rH) environments. Measurements included maximal voluntary strength, muscle activation, twitch contractile properties, and rate of torque development and soleus EMG (i.e., root mean square activity) rise from 0 to 30, −50, −100, and −200 ms during maximal isometric contractions for plantar flexors. Voluntary activation and peak twitch torque were equally reduced (−1.5% and −16.5%, respectively; P < 0.05) post-matches relative to baseline in both conditions, the latter persisting for at least 48 h, whereas strength losses (∼5%) were not significant. Absolute explosive force production declined (P < 0.05) 30 ms after contraction onset independently of condition, with no change at any other epochs. Globally, normalized rate of force development and soleus EMG activity rise values remained unchanged. In football, match-induced alterations in maximal and rapid torque production capacities of the plantar flexors are moderate and do not differ after competing in temperate and hot environments.
Fatigue develops temporarily during the most intense periods of a football game, as well as towar... more Fatigue develops temporarily during the most intense periods of a football game, as well as towards the end of a game, and the two types of fatigue are related to different physiological systems.
PLOS ONE, 2015
[This corrects the article DOI: 10.1371/journal.pone.0128072.].
Journal of Sports Sciences, 2015
We examined the temporal variation of iron&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;am... more We examined the temporal variation of iron&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s status markers during a 60 h period following a football game. Thirty-four male football players were randomly assigned to a control group (CG, N = 14, participated only in measurements and training) or an experimental group (EG, N = 20, took part in a football game one week after the completion of the competitive season). All participants trained regularly for two consecutive days after the game. Training and game load was monitored with high time-resolution global positioning system (GPS) devices. Blood samples were collected and muscle damage markers and repeated sprint ability (RSA) were assessed pre-game and at 2 h, 12 h 36 h and 60 h post-game. No changes were noted in CG. Iron concentration decreased (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) 2 h post-game and normalised thereafter whereas total iron binding capacity increased (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) 12-60 h of recovery (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05). Erythrocytes, haemoglobin (HGB) concentration, plasma volume, haematocrit, mean cell volume, mean cell HGB, mean cell HGB concentration, red cell width-SD, red cell width-CV, ferritin concentration and transferrin saturation remained unaltered during the intervention period. Creatine kinase activity and muscle soreness increased (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) throughout recovery in EG. RSA declined (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; 0.05) until 36 h of recovery and normalised thereafter. Our data demonstrate that iron status markers are only transiently affected by a football game.
PLOS ONE, 2015
We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and exten... more We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KF ecc /KE con ) and conventional (KF con /KE con ) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players' physical conditioning level.
Journal of Strength and Conditioning Research, 2015
Krustrup, P and Mohr, M. Physical demands in competitive ultimate Frisbee. J Strength Cond Res 29... more Krustrup, P and Mohr, M. Physical demands in competitive ultimate Frisbee. J Strength Cond Res 29(12): 3386-3391, 2015-The objective was to study game demands in competitive ultimate Frisbee by performing match analysis during a game. Thirteen moderately trained (Yo-Yo intermittent recovery test levels 1 and 2 [Yo-Yo IR1 and IR2] performance: 1790 ± 382 m and 657 ± 225 m, respectively) competitive male ultimate Frisbee athletes played a game in which activity profile using Global Positioning System (GPS) technology and heart rate (HR) were recorded. Game HRmean and HRpeak were 82 ± 2% and 99 ± 1% of maximum heart rate, respectively. Total game distance was 4.70 ± 0.47 km, of which 0.63 ± 0.14 km was high-intensity running and 0.21 ± 0.11 km was sprinting. In the second half, 10% less (p ≤ 0.05) ground was covered with high-intensity running compared with the first half (0.28 ± 0.08 km vs. 0.31 ± 0.07 km). Less (43-47%; p ≤ 0.05) high-intensity running was performed in the third 9-minute period of each half compared with the first two 9-minute periods of the same half. Players performed 17.4 ± 5.7 sprints during the match. Yo-Yo IR2 performance correlated to the amount of high-intensity running in the last 9 minutes of both halves (r = 0.69, p ≤ 0.05), whereas Yo-Yo IR1 performance correlated with total sprint distance (r = 0.74, p ≤ 0.05). Ultimate Frisbee is an intense intermittent team sport with high cardiovascular loading and clear indications of fatigue toward the end of each half. Yo-Yo IR test performances correlate with physical match performance.
Journal of the International Society of Sports Nutrition, 2015
Caffeine and sodium bicarbonate ingestion have been suggested to improve high-intensity intermitt... more Caffeine and sodium bicarbonate ingestion have been suggested to improve high-intensity intermittent exercise, but it is unclear if these ergogenic substances affect performance under provoked metabolic acidification. To study the effects of caffeine and sodium bicarbonate on intense intermittent exercise performance and metabolic markers under exercise-induced acidification, intense arm-cranking exercise was performed prior to intense intermittent running after intake of placebo, caffeine and sodium bicarbonate. Male team-sports athletes (n = 12) ingested sodium bicarbonate (NaHCO3; 0.4 g.kg(-1) b.w.), caffeine (CAF; 6 mg.kg(-1) b.w.) or placebo (PLA) on three different occasions. Thereafter, participants engaged in intense arm exercise prior to the Yo-Yo intermittent recovery test level-2 (Yo-Yo IR2). Heart rate, blood lactate and glucose as well as rating of perceived exertion (RPE) were determined during the protocol. CAF and NaHCO3 elicited a 14 and 23% improvement (P < 0.05...
JIMD reports, 2015
Primary carnitine deficiency (PCD) is a disorder of fatty acid oxidation with a high prevalence i... more Primary carnitine deficiency (PCD) is a disorder of fatty acid oxidation with a high prevalence in the Faroe Islands. Only patients homozygous for the c.95A>G (p.N32S) mutation have displayed severe symptoms in the Faroese patient cohort. In this study, we investigated carnitine levels in skeletal muscle, plasma, and urine as well as renal elimination kinetics before and after intermission with L-carnitine in patients homozygous for c.95A>G. Five male patients homozygous for c.95A>G were included. Regular L-carnitine supplementation was stopped and the patients were observed during five days. Blood and urine were collected throughout the study. Skeletal muscle biopsies were obtained at 0, 48, and 96 h. Mean skeletal muscle free carnitine before discontinuation of L-carnitine was low, 158 nmol/g (SD 47.4) or 5.4% of normal. Mean free carnitine in plasma (fC0) dropped from 38.7 (SD 20.4) to 6.3 (SD 1.7) μmol/L within 96 h (p < 0.05). Mean T 1/2 following oral supplementati...