Morgana Kellogg - Academia.edu (original) (raw)
Uploads
Papers by Morgana Kellogg
NAR Genomics and Bioinformatics
Secreted and membrane proteins represent a third of all cellular proteins and contain N-terminal ... more Secreted and membrane proteins represent a third of all cellular proteins and contain N-terminal signal peptides that are required for protein targeting to endoplasmic reticulum (ER). Mutations in signal peptides affect protein targeting, translocation, processing, and stability, and are associated with human diseases. However, only a few of them have been identified or characterized. In this report, we identified pathogenic signal peptide variants across the human genome using bioinformatic analyses and predicted the molecular mechanisms of their pathology. We recovered more than 65 thousand signal peptide mutations, over 11 thousand we classified as pathogenic, and proposed framework for distinction of their molecular mechanisms. The pathogenic mutations affect over 3.3 thousand genes coding for secreted and membrane proteins. Most pathogenic mutations alter the signal peptide hydrophobic core, a critical recognition region for the signal recognition particle, potentially activati...
International Journal of Molecular Sciences, Apr 19, 2023
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
International Journal of Molecular Sciences
Ribosomal heterogeneity exists within cells and between different cell types, at specific develop... more Ribosomal heterogeneity exists within cells and between different cell types, at specific developmental stages, and occurs in response to environmental stimuli. Mounting evidence supports the existence of specialized ribosomes, or specific changes to the ribosome that regulate the translation of a specific group of transcripts. These alterations have been shown to affect the affinity of ribosomes for certain mRNAs or change the cotranslational folding of nascent polypeptides at the exit tunnel. The identification of specialized ribosomes requires evidence of the incorporation of different ribosomal proteins or of modifications to rRNA and/or protein that lead(s) to physiologically relevant changes in translation. In this review, we summarize ribosomal heterogeneity and specialization in mammals and discuss their relevance to several human diseases.
Journal of Molecular Biology
Frontiers in Genetics
The signal recognition particle (SRP) is a ribonucleoprotein complex with dual functions. It co-t... more The signal recognition particle (SRP) is a ribonucleoprotein complex with dual functions. It co-translationally targets proteins with a signal sequence to the endoplasmic reticulum (ER) and protects their mRNA from degradation. If SRP is depleted or cannot recognize the signal sequence, then the Regulation of Aberrant Protein Production (RAPP) is activated, which results in the loss of secretory protein mRNA. If SRP recognizes the substrates but is unable to target them to ER, they may mislocalize or degrade. All these events lead to dramatic consequence for protein biogenesis, activating protein quality control pathways, and creating pressure on cell physiology, and might lead to the pathogenesis of disease. Indeed, SRP dysfunction is involved in many different human diseases, including: congenital neutropenia; idiopathic inflammatory myopathy; viral, protozoal, and prion infections; and cancer. In this work, we analyze diseases caused by SRP failure and discuss their possible mole...
International Journal of Molecular Sciences
Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of lif... more Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of life. It consists of one protein and one noncoding RNA in some bacteria. It is more complex in eukaryotes and consists of six proteins and one noncoding RNA in mammals. In the eukaryotic cytoplasm, SRP co-translationally targets proteins to the endoplasmic reticulum and prevents misfolding and aggregation of the secretory proteins in the cytoplasm. It was demonstrated recently that SRP also possesses an earlier unknown function, the protection of mRNAs of secretory proteins from degradation. In this review, we analyze the progress in studies of SRPs from different organisms, SRP biogenesis, its structure, and function in protein targeting and mRNA protection.
NAR Genomics and Bioinformatics
Secreted and membrane proteins represent a third of all cellular proteins and contain N-terminal ... more Secreted and membrane proteins represent a third of all cellular proteins and contain N-terminal signal peptides that are required for protein targeting to endoplasmic reticulum (ER). Mutations in signal peptides affect protein targeting, translocation, processing, and stability, and are associated with human diseases. However, only a few of them have been identified or characterized. In this report, we identified pathogenic signal peptide variants across the human genome using bioinformatic analyses and predicted the molecular mechanisms of their pathology. We recovered more than 65 thousand signal peptide mutations, over 11 thousand we classified as pathogenic, and proposed framework for distinction of their molecular mechanisms. The pathogenic mutations affect over 3.3 thousand genes coding for secreted and membrane proteins. Most pathogenic mutations alter the signal peptide hydrophobic core, a critical recognition region for the signal recognition particle, potentially activati...
International Journal of Molecular Sciences, Apr 19, 2023
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
International Journal of Molecular Sciences
Ribosomal heterogeneity exists within cells and between different cell types, at specific develop... more Ribosomal heterogeneity exists within cells and between different cell types, at specific developmental stages, and occurs in response to environmental stimuli. Mounting evidence supports the existence of specialized ribosomes, or specific changes to the ribosome that regulate the translation of a specific group of transcripts. These alterations have been shown to affect the affinity of ribosomes for certain mRNAs or change the cotranslational folding of nascent polypeptides at the exit tunnel. The identification of specialized ribosomes requires evidence of the incorporation of different ribosomal proteins or of modifications to rRNA and/or protein that lead(s) to physiologically relevant changes in translation. In this review, we summarize ribosomal heterogeneity and specialization in mammals and discuss their relevance to several human diseases.
Journal of Molecular Biology
Frontiers in Genetics
The signal recognition particle (SRP) is a ribonucleoprotein complex with dual functions. It co-t... more The signal recognition particle (SRP) is a ribonucleoprotein complex with dual functions. It co-translationally targets proteins with a signal sequence to the endoplasmic reticulum (ER) and protects their mRNA from degradation. If SRP is depleted or cannot recognize the signal sequence, then the Regulation of Aberrant Protein Production (RAPP) is activated, which results in the loss of secretory protein mRNA. If SRP recognizes the substrates but is unable to target them to ER, they may mislocalize or degrade. All these events lead to dramatic consequence for protein biogenesis, activating protein quality control pathways, and creating pressure on cell physiology, and might lead to the pathogenesis of disease. Indeed, SRP dysfunction is involved in many different human diseases, including: congenital neutropenia; idiopathic inflammatory myopathy; viral, protozoal, and prion infections; and cancer. In this work, we analyze diseases caused by SRP failure and discuss their possible mole...
International Journal of Molecular Sciences
Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of lif... more Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of life. It consists of one protein and one noncoding RNA in some bacteria. It is more complex in eukaryotes and consists of six proteins and one noncoding RNA in mammals. In the eukaryotic cytoplasm, SRP co-translationally targets proteins to the endoplasmic reticulum and prevents misfolding and aggregation of the secretory proteins in the cytoplasm. It was demonstrated recently that SRP also possesses an earlier unknown function, the protection of mRNAs of secretory proteins from degradation. In this review, we analyze the progress in studies of SRPs from different organisms, SRP biogenesis, its structure, and function in protein targeting and mRNA protection.