Morten Meyer - Academia.edu (original) (raw)
Papers by Morten Meyer
Cells
Parkinson’s disease (PD) is a neurodegenerative disorder that has been associated with mitochondr... more Parkinson’s disease (PD) is a neurodegenerative disorder that has been associated with mitochondrial dysfunction, oxidative stress, and defects in mitophagy as well as α-synuclein-positive inclusions, termed Lewy bodies (LBs), which are a common pathological hallmark in PD. Mitophagy is a process that maintains cellular health by eliminating dysfunctional mitochondria, and it is triggered by ubiquitination of mitochondrial-associated proteins—e.g., through the PINK1/Parkin pathway—which results in engulfment by the autophagosome and degradation in lysosomes. Deubiquitinating enzymes (DUBs) can regulate this process at several levels by deubiquitinating mitochondrial substrates and other targets in the mitophagic pathway, such as Parkin. Moreover, DUBs can affect α-synuclein aggregation through regulation of degradative pathways, deubiquitination of α-synuclein itself, and/or via co-localization with α-synuclein in inclusions. DUBs with a known association to PD are described in this...
Swiss Medical Weekly
There is increasing interest in the search for therapeutic options for diseases and injuries of t... more There is increasing interest in the search for therapeutic options for diseases and injuries of the central nervous system (CNS), for which currently no effective treatment strategies are available. Replacement of damaged cells and restoration of function can be accomplished by transplantation of cells derived from different sources, such as human foetal tissue, genetically modified cell lines, embryonic or somatic stem cells. Preclinical and clinical trials have shown promising results in neurodegenerative disorders, like Parkinson's and Huntington's disease, but also ischaemic stroke, intracerebral haemorrhage, demyelinating disorders, epilepsy and traumatic lesions of the brain and spinal cord. Other studies have focused on finding new ways to activate and direct endogenous repair mechanisms in the CNS, eg, by exposure to specific neuronal growth factors or by inactivating inhibitory molecules. Neuroprotective drugs may offer an additional tool for improving neuronal survival in acute or chronic CNS diseases. Importantly however, a number of scientific issues need to be addressed in order to permit the introduction of these experimental techniques in the wider clinical setting.
PLoS ONE, 2021
Background Parkinson’s disease is characterized by motor dysfunctions including bradykinesia. In ... more Background Parkinson’s disease is characterized by motor dysfunctions including bradykinesia. In a recent study, eight weeks of daily transcranial stimulation with bipolar pulsed electromagnetic fields improved functional rate of force development and decreased inter-hand tremor coherence in patients with mild Parkinson’s disease. Objective To investigate the effect of long-term treatment with transcranial bipolar pulsed electromagnetic fields on motor performance in terms of movement speed and on neurotrophic and angiogenic factors. Methods Patients diagnosed with idiopathic Parkinson’s disease had either daily 30-min treatment with bipolar (±50 V) transcranial pulsed electromagnetic stimulation (squared pulses, 3ms duration) for three eight-week periods separated by one-week pauses (T-PEMF group) (n = 16) or were included in a PD-control group (n = 8). Movement speed was assessed in a six-cycle sit-to-stand task performed on a force plate. Cerebrospinal fluid and venous blood were...
Ugeskrift for laeger, Jan 18, 2016
Research into the causes of neurodegenerative diseases like Parkinson's- and Alzheimer's ... more Research into the causes of neurodegenerative diseases like Parkinson's- and Alzheimer's disease has long been hampered by the lack of access to live disease-afflicted neurons for in vitro studies. The introduction of induced pluripotent stem (iPS) cells has made such studies possible. iPS cells can be reprogrammed from somatic patient-derived cells (e.g. skin cells) and differentiated into any cell type of the body. This allows for the production of neurons, which have the genetic background of the patients and show disease-relevant phenotypes.
Restorative neurology and neuroscience, 2003
To analyze the effects of CGP 3466, a compound structurally related to deprenyl, on survival and ... more To analyze the effects of CGP 3466, a compound structurally related to deprenyl, on survival and function of fetal ventral mesencephalic dopaminergic neurons. Free-floating roller tube (FFRT) cultures of rat (E14) ventral mesencephalon were treated with CGP 3466 [10-8 M] for 7 days. Tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) immunocytochemistry was performed to allow analysis of dopaminergic neurons and astroglial cells, respectively. Lactate dehydrogenase activity in the culture medium served as a measure of cell death. Control and CGP 3466 treated cultures were grafted into 6-hydroxydopamine-lesioned rats, and graft survival and function evaluated 9 weeks posttransplantation. FFRT cultures treated with CGP 3466 contained significantly more (two fold) surviving TH-immunoreactive (-ir) neurons and decreased lactate dehydrogenase activity in the culture medium compared to controls. The actions of CGP 3466 seem not to be mediated by astroglial cells, since GF...
Neuroscience Letters, 2001
The feasibility of non-viral gene transfer using liposomes is described for human fetal nigral ti... more The feasibility of non-viral gene transfer using liposomes is described for human fetal nigral tissue. Ventral mesencephalic explants from 6 to 12 week old fetuses were grown as free-¯oating roller tube cultures. For the transfection, a vector coding for b-galactosidase driven by the Rous Sarcoma Virus promoter was used. The developmental stage of the human tissue, time in vitro and the amount of vector DNA used signi®cantly in¯uenced the transfection ef®ciency. Optimal transfection results were obtained with tissue from a 10 week old fetus, cultured for 4 days and transfected with mixtures containing 4 mg vector DNA. Histological analysis suggested that a speci®c population of ventral mesencephalic precursor cells were the target for the gene transfer. This ®nding might have implications for gene delivery and cell replacement strategies in Parkinson's disease.
Molecular and Cellular Neuroscience, 2000
The glial cell line-derived neurotrophic factor (GDNF)family of neurotrophic factors consisted un... more The glial cell line-derived neurotrophic factor (GDNF)family of neurotrophic factors consisted until recently of three members, GDNF, neurturin, and persephin. We describe here the cloning of a new GDNF-family member, neublastin (NBN), identical to artemin (ART), recently published (Baloh et al., 1998). Addition of NBN/ART to cultures of fetal mesencephalic dopamine (DA) neurons increased the number of surviving tyrosine hydroxylase (TH)-immunoreactive neurons by D70%, similar to the maximal effect obtained with GDNF. To investigate the neuroprotective effects in vivo, lentiviral vectors carrying the cDNA for NBN/ART or GDNF were injected into the striatum and ventral midbrain. Three weeks after an intrastriatal 6-hydroxydopamine lesion only about 20% of the nigral DA neurons were left in the control group, while 80-90% of the DA neurons remained in the NBN/ART and GDNF treatment groups, and the striatal TH-immunoreactive innervation was partly spared. We conclude that NBN/ART, similarly to GDNF, is a potent neuroprotective factor for the nigrostriatal DA neurons in vivo.
Journal of Neuroscience Methods, 2007
By combining new and established protocols we have developed a procedure for isolation and propag... more By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue-spheres (NTS) in EGF and FGF2 containing medium. The spheres were cut into quarters when passaged every 10-15th day, avoiding mechanical or enzymatic dissociation in order to minimize cellular trauma and preserve intercellular contacts. For analysis of regional differences within the forebrain SVZ, NTS were derived from three rostro-caudal levels of the lateral ventricles (anterior, intermediate and posterior) and propagated separately. Explants from all three levels produced proliferating NTS, but "anterior" NTS in general grew to smaller sizes than "intermediate" and "posterior" NTS. Posterior NTS moreover maintained their neurogenic potential throughout 77 days of propagation, while the ability of anterior NTS to generate neurons severely declined from day 40. The present procedure describes isolation and long-term expansion of forebrain SVZ tissue with potential preservation of the endogenous cellular content, thus allowing experimental studies of neural precursor cells and their niche.
Journal of Neurochemistry, 2008
The induction and further specification of dopaminergic (DA) precursors as well as the differenti... more The induction and further specification of dopaminergic (DA) precursors as well as the differentiation of DA precursors towards mature DA neurons within the ventral midbrain (VM) involves a complex spatial and temporal cascade of coordinated intrinsic and extrinsic signals (for overview, see Prakash and Wurst 2006a,b). In early development, soluble factors, including Wnt1, transforming
Neurochemical Research, 2002
NS-417 (5-(4-Chlorophenyl)-8-methyl-6-7-8-9-tetrahydro-1-H-pyrrolo[3.2-h]isoquinoline-2,3-dione-3... more NS-417 (5-(4-Chlorophenyl)-8-methyl-6-7-8-9-tetrahydro-1-H-pyrrolo[3.2-h]isoquinoline-2,3-dione-3-oxim hydrochloric acid salt) belongs to a new chemical series of compounds. NS-417 rescued differentiated PC12 cells from death induced by withdrawal of serum and nerve growth factor. Furthermore, NS-417 stimulated neurotrophic factor-induced neurite outgrowth in undifferentiated PC12 cells. In accordance with this observation, NS-417 potentiated NGF-induced signaling, such as activation of the extracellular signal-regulated kinases ERK1 and ERK2
Experimental Neurology, 2000
Transplantation of embryonic nigral tissue is used as an experimental therapy for patients with P... more Transplantation of embryonic nigral tissue is used as an experimental therapy for patients with Parkinson's disease but is hampered by a limited survival rate of dopaminergic neurons. Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for nigrostriatal dopaminergic neurons, and the present in vitro study aimed at improving the survival of dopaminergic neurons in porcine mesencephalic brain slice cultures by adding transfected, immortalized, temperature-sensitive GDNF-releasing HiB5 cells (HiB5-GDNF). Embryonic (E27/28) porcine ventral mesencephalic brain slices were placed on membrane inserts in six-well plates with serum-containing medium, and HiB5-GDNF, nontransfected HiB5 cells (HiB5-control), or green fluorescent protein-producing HiB5 cells (HiB5-GFP) were seeded onto each tissue slice. The concentration of GDNF in the coculture medium was 0.49 ؎ 0.13 ng/ml at day 9 and 0.22 ؎ 0.05 ng/ml at day 19 (mean ؎ SEM) as measured by GDNF ELISA. The decrease in release of GDNF over time was paralleled by a gradual reduction in the number of HiB5-GFP cells expressing the reporter gene (EGFP). At day 12, HPLC analysis revealed that medium from HiB5-GDNF cocultures contained 2.0 times more dopamine than medium from HiB5-control cocultures. At day 21 there was 1.6 times more dopamine. Similar results were obtained for the dopamine metabolite 3,4dihydroxyphenylacetic acid. At day 21, cell counts showed that HiB5-GDNF cocultures contained 1.5 times more tyrosine hydroxylase immunoreactive neurons than HiB5-control cocultures, which must be compared with a 1.8 fold increase after chronic treatment with rhGDNF (10 ng/ml). In conclusion, the better survival of HiB5-GDNF cocultures is promising for the generation of effective cell lines for local delivery of neurotrophic factors to intracerebral nigral grafts.
Experimental Cell Research, 2011
Effective numerical expansion of dopaminergic precursors might overcome the limited availability ... more Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.
Brain Research, 2008
Ventral mesencephalic (VM) precursor cells are of interest in the search for transplantable dopam... more Ventral mesencephalic (VM) precursor cells are of interest in the search for transplantable dopaminergic neurons for cell therapy in Parkinson's disease (PD). In the present study we investigated the survival and functional capacity of in vitro expanded, primary VM precursor cells after intrastriatal grafting to a rat model of PD. Embryonic day 12 rat VM tissue was mechanically dissociated and cultured for 4 or 8 days in vitro (DIV) in the presence of FGF2 (20 ng/ml), FGF8 (20 ng/ml) or without mitogens (control). Cells were thereafter differentiated for 6 DIV by mitogen withdrawal and addition of serum. After differentiation, significantly more tyrosine hydroxylase-immunoreactive (TH-ir), dopamine-producing neurons were found in FGF2- and FGF8-expanded cultures compared to controls. Moreover, expansion for 4 DIV resulted in significantly more TH-ir cells than expansion for 8 DIV both for FGF2 (2.4 fold; P<0.001) and FGF8 (3.8 fold; P<0.001) treated cultures. The functional potential of the expanded cells (4 DIV) was examined after grafting into striatum of aged 6-hydroxydopamine-lesioned rats. Amphetamine-induced rotations performed 3, 6 and 9 weeks postgrafting revealed that grafts of FGF2-expanded cells induced a significantly faster and better functional recovery than grafts of FGF8-expanded cells or control cells (P<0.05 for both). Grafts of FGF2-expanded cells also contained significantly more TH-ir cells than grafts of FGF8-expanded cells (P<0.05) or control cells (P<0.01). In conclusion, FGF2-mediated pregrafting expansion of primary VM precursor cells considerably improves dopaminergic cell survival and functional restoration in a rat model of PD.
Brain Research, 2005
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for ventral mesenc... more Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for ventral mesencephalic (VM) dopaminergic neurons. Subpopulations of dopaminergic and non-dopaminergic VM neurons express the calcium-binding proteins calbindin (CB) and calretinin (CR). Characterization of the actions of GDNF on distinct subpopulations of VM cells is of great importance for its potential use as a therapeutic molecule and for understanding its role in neuronal development. The present study investigated the effects of GDNF on the survival and morphological differentiation of dopaminergic and non-dopaminergic neurons in primary cultures of embryonic day (E) 18 rat VM. As expected from our results obtained using E14 VM cells, GDNF significantly increased the morphological complexity of E18 CB-immunoreractive (CB-ir), tyrosine hydroxylase (TH)-ir, and CR-ir neurons and also the densities of CB-ir and TH-ir neurons. Interestingly, densities of E18 CR-ir neurons, contrarily to our previous observations on E14 CR-ir neurons, were significantly higher after GDNF treatment (by 1.5-fold). Colocalization analyses demonstrated that GDNF increased the densitiy of dopaminergic neurons expressing CR (TH+/CR+/CB-), while no significant effects were observed for TH-/CR+/CB- cell densities. In contrast, we found that GDNF significantly increased the total fiber length (2-fold), number of primary neurites (1.4-fold), number of branching points (2.5-fold), and the size of neurite field per neuron (1.8-fold) of the non-dopaminergic CR-expressing neurons (TH-/CR+/CB-). These cells were identified as GABA-expressing neurons. In conclusion, our findings recognize GDNF as a potent differentiation factor for the development of VM dopaminergic and non-dopaminergic CR-expressing neurons.
Brain Research, 2009
Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's... more Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's disease (PD). The low availability and the poor survival and integration of transplanted cells in the host brain are major obstacles in this approach. Glial cell linederived neurotrophic factor (GDNF) is a potent neurotrophic factor with growth-and survival-promoting capabilities for developing DA neurons. In the present study, we examined whether pretreatment of ventral mesencephalic (VM) free-floating roller tube (FFRT) cultures with GDNF would improve graft survival and function. For that purpose organotypic cultures of E14 rat VM were grown for 2, 4 or 8 days in the absence (control) or presence of GDNF [10 ng/ml] and transplanted into the striatum of 6-hydroxydopaminelesioned rats. While all groups of rats showed a significant reduction in D-amphetamineinduced rotations at 6 weeks posttransplantation a significantly improved graft function was observed only in the days in vitro (DIV) 4 GDNF pretreated group compared to the control group. In addition, no statistical significant differences between groups were found in the number of surviving tyrosine hydroxylase-immunoreactive (TH-ir) neurons assessed at 9 weeks posttransplantation. However, a tendency for higher TH-ir fiber outgrowth from the transplants in the GDNF pretreated groups as compared to corresponding controls was observed. Furthermore, GDNF pretreatment showed a tendency for a higher number of GIRK2 positive neurons in the grafts. In sum, our findings demonstrate that GDNF pretreatment was not disadvantageous for transplants of embryonic rat VM with the FFRT culture technique but only marginally improved graft survival and function.
Basic <html_ent glyph="@amp;" ascii="&"/> Clinical Pharmacology <html_ent glyph="@amp;" ascii="&"/> Toxicology, 2006
Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically ana... more Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.
Stem Cell Research, 2020
Autism spectrum disorder is a heterogenous neurodevelopmental disorder. The patients experience c... more Autism spectrum disorder is a heterogenous neurodevelopmental disorder. The patients experience challenges in social interaction and communication skills as well as restricted and/or repetitive behaviors. To understand the molecular mechanisms underlying developmental brain disorders, patient-derived cellular models represent a useful tool. We have generated a human induced pluripotent stem cell line (SDUKIi003-A) from skin fibroblasts derived from a 20-year old male patient diagnosed with Asperger syndrome ("FYNEN-cohort" of Southern Denmark). The reprogramming of the fibroblasts was accomplished using integration-free episomal plasmids. Characterization validated the expression of pluripotency markers, differentiation into the three germ layers, and absence of chromosomal abnormalities.
Acta Neuropathologica, 2021
Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the ne... more Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different struc...
Cells
Parkinson’s disease (PD) is a neurodegenerative disorder that has been associated with mitochondr... more Parkinson’s disease (PD) is a neurodegenerative disorder that has been associated with mitochondrial dysfunction, oxidative stress, and defects in mitophagy as well as α-synuclein-positive inclusions, termed Lewy bodies (LBs), which are a common pathological hallmark in PD. Mitophagy is a process that maintains cellular health by eliminating dysfunctional mitochondria, and it is triggered by ubiquitination of mitochondrial-associated proteins—e.g., through the PINK1/Parkin pathway—which results in engulfment by the autophagosome and degradation in lysosomes. Deubiquitinating enzymes (DUBs) can regulate this process at several levels by deubiquitinating mitochondrial substrates and other targets in the mitophagic pathway, such as Parkin. Moreover, DUBs can affect α-synuclein aggregation through regulation of degradative pathways, deubiquitination of α-synuclein itself, and/or via co-localization with α-synuclein in inclusions. DUBs with a known association to PD are described in this...
Swiss Medical Weekly
There is increasing interest in the search for therapeutic options for diseases and injuries of t... more There is increasing interest in the search for therapeutic options for diseases and injuries of the central nervous system (CNS), for which currently no effective treatment strategies are available. Replacement of damaged cells and restoration of function can be accomplished by transplantation of cells derived from different sources, such as human foetal tissue, genetically modified cell lines, embryonic or somatic stem cells. Preclinical and clinical trials have shown promising results in neurodegenerative disorders, like Parkinson's and Huntington's disease, but also ischaemic stroke, intracerebral haemorrhage, demyelinating disorders, epilepsy and traumatic lesions of the brain and spinal cord. Other studies have focused on finding new ways to activate and direct endogenous repair mechanisms in the CNS, eg, by exposure to specific neuronal growth factors or by inactivating inhibitory molecules. Neuroprotective drugs may offer an additional tool for improving neuronal survival in acute or chronic CNS diseases. Importantly however, a number of scientific issues need to be addressed in order to permit the introduction of these experimental techniques in the wider clinical setting.
PLoS ONE, 2021
Background Parkinson’s disease is characterized by motor dysfunctions including bradykinesia. In ... more Background Parkinson’s disease is characterized by motor dysfunctions including bradykinesia. In a recent study, eight weeks of daily transcranial stimulation with bipolar pulsed electromagnetic fields improved functional rate of force development and decreased inter-hand tremor coherence in patients with mild Parkinson’s disease. Objective To investigate the effect of long-term treatment with transcranial bipolar pulsed electromagnetic fields on motor performance in terms of movement speed and on neurotrophic and angiogenic factors. Methods Patients diagnosed with idiopathic Parkinson’s disease had either daily 30-min treatment with bipolar (±50 V) transcranial pulsed electromagnetic stimulation (squared pulses, 3ms duration) for three eight-week periods separated by one-week pauses (T-PEMF group) (n = 16) or were included in a PD-control group (n = 8). Movement speed was assessed in a six-cycle sit-to-stand task performed on a force plate. Cerebrospinal fluid and venous blood were...
Ugeskrift for laeger, Jan 18, 2016
Research into the causes of neurodegenerative diseases like Parkinson's- and Alzheimer's ... more Research into the causes of neurodegenerative diseases like Parkinson's- and Alzheimer's disease has long been hampered by the lack of access to live disease-afflicted neurons for in vitro studies. The introduction of induced pluripotent stem (iPS) cells has made such studies possible. iPS cells can be reprogrammed from somatic patient-derived cells (e.g. skin cells) and differentiated into any cell type of the body. This allows for the production of neurons, which have the genetic background of the patients and show disease-relevant phenotypes.
Restorative neurology and neuroscience, 2003
To analyze the effects of CGP 3466, a compound structurally related to deprenyl, on survival and ... more To analyze the effects of CGP 3466, a compound structurally related to deprenyl, on survival and function of fetal ventral mesencephalic dopaminergic neurons. Free-floating roller tube (FFRT) cultures of rat (E14) ventral mesencephalon were treated with CGP 3466 [10-8 M] for 7 days. Tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) immunocytochemistry was performed to allow analysis of dopaminergic neurons and astroglial cells, respectively. Lactate dehydrogenase activity in the culture medium served as a measure of cell death. Control and CGP 3466 treated cultures were grafted into 6-hydroxydopamine-lesioned rats, and graft survival and function evaluated 9 weeks posttransplantation. FFRT cultures treated with CGP 3466 contained significantly more (two fold) surviving TH-immunoreactive (-ir) neurons and decreased lactate dehydrogenase activity in the culture medium compared to controls. The actions of CGP 3466 seem not to be mediated by astroglial cells, since GF...
Neuroscience Letters, 2001
The feasibility of non-viral gene transfer using liposomes is described for human fetal nigral ti... more The feasibility of non-viral gene transfer using liposomes is described for human fetal nigral tissue. Ventral mesencephalic explants from 6 to 12 week old fetuses were grown as free-¯oating roller tube cultures. For the transfection, a vector coding for b-galactosidase driven by the Rous Sarcoma Virus promoter was used. The developmental stage of the human tissue, time in vitro and the amount of vector DNA used signi®cantly in¯uenced the transfection ef®ciency. Optimal transfection results were obtained with tissue from a 10 week old fetus, cultured for 4 days and transfected with mixtures containing 4 mg vector DNA. Histological analysis suggested that a speci®c population of ventral mesencephalic precursor cells were the target for the gene transfer. This ®nding might have implications for gene delivery and cell replacement strategies in Parkinson's disease.
Molecular and Cellular Neuroscience, 2000
The glial cell line-derived neurotrophic factor (GDNF)family of neurotrophic factors consisted un... more The glial cell line-derived neurotrophic factor (GDNF)family of neurotrophic factors consisted until recently of three members, GDNF, neurturin, and persephin. We describe here the cloning of a new GDNF-family member, neublastin (NBN), identical to artemin (ART), recently published (Baloh et al., 1998). Addition of NBN/ART to cultures of fetal mesencephalic dopamine (DA) neurons increased the number of surviving tyrosine hydroxylase (TH)-immunoreactive neurons by D70%, similar to the maximal effect obtained with GDNF. To investigate the neuroprotective effects in vivo, lentiviral vectors carrying the cDNA for NBN/ART or GDNF were injected into the striatum and ventral midbrain. Three weeks after an intrastriatal 6-hydroxydopamine lesion only about 20% of the nigral DA neurons were left in the control group, while 80-90% of the DA neurons remained in the NBN/ART and GDNF treatment groups, and the striatal TH-immunoreactive innervation was partly spared. We conclude that NBN/ART, similarly to GDNF, is a potent neuroprotective factor for the nigrostriatal DA neurons in vivo.
Journal of Neuroscience Methods, 2007
By combining new and established protocols we have developed a procedure for isolation and propag... more By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue-spheres (NTS) in EGF and FGF2 containing medium. The spheres were cut into quarters when passaged every 10-15th day, avoiding mechanical or enzymatic dissociation in order to minimize cellular trauma and preserve intercellular contacts. For analysis of regional differences within the forebrain SVZ, NTS were derived from three rostro-caudal levels of the lateral ventricles (anterior, intermediate and posterior) and propagated separately. Explants from all three levels produced proliferating NTS, but "anterior" NTS in general grew to smaller sizes than "intermediate" and "posterior" NTS. Posterior NTS moreover maintained their neurogenic potential throughout 77 days of propagation, while the ability of anterior NTS to generate neurons severely declined from day 40. The present procedure describes isolation and long-term expansion of forebrain SVZ tissue with potential preservation of the endogenous cellular content, thus allowing experimental studies of neural precursor cells and their niche.
Journal of Neurochemistry, 2008
The induction and further specification of dopaminergic (DA) precursors as well as the differenti... more The induction and further specification of dopaminergic (DA) precursors as well as the differentiation of DA precursors towards mature DA neurons within the ventral midbrain (VM) involves a complex spatial and temporal cascade of coordinated intrinsic and extrinsic signals (for overview, see Prakash and Wurst 2006a,b). In early development, soluble factors, including Wnt1, transforming
Neurochemical Research, 2002
NS-417 (5-(4-Chlorophenyl)-8-methyl-6-7-8-9-tetrahydro-1-H-pyrrolo[3.2-h]isoquinoline-2,3-dione-3... more NS-417 (5-(4-Chlorophenyl)-8-methyl-6-7-8-9-tetrahydro-1-H-pyrrolo[3.2-h]isoquinoline-2,3-dione-3-oxim hydrochloric acid salt) belongs to a new chemical series of compounds. NS-417 rescued differentiated PC12 cells from death induced by withdrawal of serum and nerve growth factor. Furthermore, NS-417 stimulated neurotrophic factor-induced neurite outgrowth in undifferentiated PC12 cells. In accordance with this observation, NS-417 potentiated NGF-induced signaling, such as activation of the extracellular signal-regulated kinases ERK1 and ERK2
Experimental Neurology, 2000
Transplantation of embryonic nigral tissue is used as an experimental therapy for patients with P... more Transplantation of embryonic nigral tissue is used as an experimental therapy for patients with Parkinson's disease but is hampered by a limited survival rate of dopaminergic neurons. Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for nigrostriatal dopaminergic neurons, and the present in vitro study aimed at improving the survival of dopaminergic neurons in porcine mesencephalic brain slice cultures by adding transfected, immortalized, temperature-sensitive GDNF-releasing HiB5 cells (HiB5-GDNF). Embryonic (E27/28) porcine ventral mesencephalic brain slices were placed on membrane inserts in six-well plates with serum-containing medium, and HiB5-GDNF, nontransfected HiB5 cells (HiB5-control), or green fluorescent protein-producing HiB5 cells (HiB5-GFP) were seeded onto each tissue slice. The concentration of GDNF in the coculture medium was 0.49 ؎ 0.13 ng/ml at day 9 and 0.22 ؎ 0.05 ng/ml at day 19 (mean ؎ SEM) as measured by GDNF ELISA. The decrease in release of GDNF over time was paralleled by a gradual reduction in the number of HiB5-GFP cells expressing the reporter gene (EGFP). At day 12, HPLC analysis revealed that medium from HiB5-GDNF cocultures contained 2.0 times more dopamine than medium from HiB5-control cocultures. At day 21 there was 1.6 times more dopamine. Similar results were obtained for the dopamine metabolite 3,4dihydroxyphenylacetic acid. At day 21, cell counts showed that HiB5-GDNF cocultures contained 1.5 times more tyrosine hydroxylase immunoreactive neurons than HiB5-control cocultures, which must be compared with a 1.8 fold increase after chronic treatment with rhGDNF (10 ng/ml). In conclusion, the better survival of HiB5-GDNF cocultures is promising for the generation of effective cell lines for local delivery of neurotrophic factors to intracerebral nigral grafts.
Experimental Cell Research, 2011
Effective numerical expansion of dopaminergic precursors might overcome the limited availability ... more Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.
Brain Research, 2008
Ventral mesencephalic (VM) precursor cells are of interest in the search for transplantable dopam... more Ventral mesencephalic (VM) precursor cells are of interest in the search for transplantable dopaminergic neurons for cell therapy in Parkinson&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s disease (PD). In the present study we investigated the survival and functional capacity of in vitro expanded, primary VM precursor cells after intrastriatal grafting to a rat model of PD. Embryonic day 12 rat VM tissue was mechanically dissociated and cultured for 4 or 8 days in vitro (DIV) in the presence of FGF2 (20 ng/ml), FGF8 (20 ng/ml) or without mitogens (control). Cells were thereafter differentiated for 6 DIV by mitogen withdrawal and addition of serum. After differentiation, significantly more tyrosine hydroxylase-immunoreactive (TH-ir), dopamine-producing neurons were found in FGF2- and FGF8-expanded cultures compared to controls. Moreover, expansion for 4 DIV resulted in significantly more TH-ir cells than expansion for 8 DIV both for FGF2 (2.4 fold; P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) and FGF8 (3.8 fold; P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.001) treated cultures. The functional potential of the expanded cells (4 DIV) was examined after grafting into striatum of aged 6-hydroxydopamine-lesioned rats. Amphetamine-induced rotations performed 3, 6 and 9 weeks postgrafting revealed that grafts of FGF2-expanded cells induced a significantly faster and better functional recovery than grafts of FGF8-expanded cells or control cells (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05 for both). Grafts of FGF2-expanded cells also contained significantly more TH-ir cells than grafts of FGF8-expanded cells (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.05) or control cells (P&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;0.01). In conclusion, FGF2-mediated pregrafting expansion of primary VM precursor cells considerably improves dopaminergic cell survival and functional restoration in a rat model of PD.
Brain Research, 2005
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for ventral mesenc... more Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for ventral mesencephalic (VM) dopaminergic neurons. Subpopulations of dopaminergic and non-dopaminergic VM neurons express the calcium-binding proteins calbindin (CB) and calretinin (CR). Characterization of the actions of GDNF on distinct subpopulations of VM cells is of great importance for its potential use as a therapeutic molecule and for understanding its role in neuronal development. The present study investigated the effects of GDNF on the survival and morphological differentiation of dopaminergic and non-dopaminergic neurons in primary cultures of embryonic day (E) 18 rat VM. As expected from our results obtained using E14 VM cells, GDNF significantly increased the morphological complexity of E18 CB-immunoreractive (CB-ir), tyrosine hydroxylase (TH)-ir, and CR-ir neurons and also the densities of CB-ir and TH-ir neurons. Interestingly, densities of E18 CR-ir neurons, contrarily to our previous observations on E14 CR-ir neurons, were significantly higher after GDNF treatment (by 1.5-fold). Colocalization analyses demonstrated that GDNF increased the densitiy of dopaminergic neurons expressing CR (TH+/CR+/CB-), while no significant effects were observed for TH-/CR+/CB- cell densities. In contrast, we found that GDNF significantly increased the total fiber length (2-fold), number of primary neurites (1.4-fold), number of branching points (2.5-fold), and the size of neurite field per neuron (1.8-fold) of the non-dopaminergic CR-expressing neurons (TH-/CR+/CB-). These cells were identified as GABA-expressing neurons. In conclusion, our findings recognize GDNF as a potent differentiation factor for the development of VM dopaminergic and non-dopaminergic CR-expressing neurons.
Brain Research, 2009
Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's... more Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's disease (PD). The low availability and the poor survival and integration of transplanted cells in the host brain are major obstacles in this approach. Glial cell linederived neurotrophic factor (GDNF) is a potent neurotrophic factor with growth-and survival-promoting capabilities for developing DA neurons. In the present study, we examined whether pretreatment of ventral mesencephalic (VM) free-floating roller tube (FFRT) cultures with GDNF would improve graft survival and function. For that purpose organotypic cultures of E14 rat VM were grown for 2, 4 or 8 days in the absence (control) or presence of GDNF [10 ng/ml] and transplanted into the striatum of 6-hydroxydopaminelesioned rats. While all groups of rats showed a significant reduction in D-amphetamineinduced rotations at 6 weeks posttransplantation a significantly improved graft function was observed only in the days in vitro (DIV) 4 GDNF pretreated group compared to the control group. In addition, no statistical significant differences between groups were found in the number of surviving tyrosine hydroxylase-immunoreactive (TH-ir) neurons assessed at 9 weeks posttransplantation. However, a tendency for higher TH-ir fiber outgrowth from the transplants in the GDNF pretreated groups as compared to corresponding controls was observed. Furthermore, GDNF pretreatment showed a tendency for a higher number of GIRK2 positive neurons in the grafts. In sum, our findings demonstrate that GDNF pretreatment was not disadvantageous for transplants of embryonic rat VM with the FFRT culture technique but only marginally improved graft survival and function.
Basic <html_ent glyph="@amp;" ascii="&"/> Clinical Pharmacology <html_ent glyph="@amp;" ascii="&"/> Toxicology, 2006
Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically ana... more Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.
Stem Cell Research, 2020
Autism spectrum disorder is a heterogenous neurodevelopmental disorder. The patients experience c... more Autism spectrum disorder is a heterogenous neurodevelopmental disorder. The patients experience challenges in social interaction and communication skills as well as restricted and/or repetitive behaviors. To understand the molecular mechanisms underlying developmental brain disorders, patient-derived cellular models represent a useful tool. We have generated a human induced pluripotent stem cell line (SDUKIi003-A) from skin fibroblasts derived from a 20-year old male patient diagnosed with Asperger syndrome ("FYNEN-cohort" of Southern Denmark). The reprogramming of the fibroblasts was accomplished using integration-free episomal plasmids. Characterization validated the expression of pluripotency markers, differentiation into the three germ layers, and absence of chromosomal abnormalities.
Acta Neuropathologica, 2021
Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the ne... more Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different struc...