N. Deighton - Academia.edu (original) (raw)

Related Authors

Nicolas Betancourt

Ruth Cho

University of Maryland Baltimore County

Uploads

Papers by N. Deighton

Research paper thumbnail of Systems Genomics of Metabolic Phenotypes in Wild-Type Drosophila melanogaster

Genetics, 2014

Systems biology is an approach to dissection of complex traits that explicitly recognizes the imp... more Systems biology is an approach to dissection of complex traits that explicitly recognizes the impact of genetic, physiological, and environmental interactions in the generation of phenotypic variation. We describe comprehensive transcriptional and metabolic profiling in Drosophila melanogaster across four diets, finding little overlap in modular architecture. Genotype and genotype-by-diet interactions are a major component of transcriptional variation (24 and 5.3% of the total variation, respectively) while there were no main effects of diet (<1%). Genotype was also a major contributor to metabolomic variation (16%), but in contrast to the transcriptome, diet had a large effect (9%) and the interaction effect was minor (2%) for the metabolome. Yet specific principal components of these molecular phenotypes measured in larvae are strongly correlated with particular metabolic syndrome-like phenotypes such as pupal weight, larval sugar content and triglyceride content, development t...

Research paper thumbnail of Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products

Journal of Experimental Botany, 2002

Infection of leaves of Arabidopsis thaliana with conidial suspensions of the necrotrophic pathoge... more Infection of leaves of Arabidopsis thaliana with conidial suspensions of the necrotrophic pathogen Botrytis cinerea resulted in a large decrease in the level of ascorbic acid and increases in intensity of a single-peak free radical and Fe(III) (g ¼ 4.27) signals in electron paramagnetic resonance (EPR) spectra. These changes were not confined to the spreading lesions or associated areas of chlorosis, but extended to other apparently healthy tissues in the infected leaves. They are, therefore, consistent with the existence of high levels of oxidative stress being generated as a result of the infection process. The expected accompanying increases in levels of the aldehydic products of lipid peroxidation, malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE), were not observed, and in the case of MDA the levels in tissue from infected plants were appreciably lower than in the healthy controls. These last findings are surprising and demonstrate a difference in the response of A. thaliana to infection with B. cinerea compared with tissues from other plant families studied previously.

Research paper thumbnail of Systems Genomics of Metabolic Phenotypes in Wild-Type Drosophila melanogaster

Genetics, 2014

Systems biology is an approach to dissection of complex traits that explicitly recognizes the imp... more Systems biology is an approach to dissection of complex traits that explicitly recognizes the impact of genetic, physiological, and environmental interactions in the generation of phenotypic variation. We describe comprehensive transcriptional and metabolic profiling in Drosophila melanogaster across four diets, finding little overlap in modular architecture. Genotype and genotype-by-diet interactions are a major component of transcriptional variation (24 and 5.3% of the total variation, respectively) while there were no main effects of diet (,1%). Genotype was also a major contributor to metabolomic variation (16%), but in contrast to the transcriptome, diet had a large effect (9%) and the interaction effect was minor (2%) for the metabolome. Yet specific principal components of these molecular phenotypes measured in larvae are strongly correlated with particular metabolic syndrome-like phenotypes such as pupal weight, larval sugar content and triglyceride content, development time, and cardiac arrhythmia in adults. The second principal component of the metabolomic profile is especially informative across these traits with glycine identified as a key loading variable. To further relate this physiological variability to genotypic polymorphism, we performed evolve-and-resequence experiments, finding rapid and replicated changes in gene frequency across hundreds of loci that are specific to each diet. Adaptation to diet is thus highly polygenic. However, loci differentially transcribed across diet or previously identified by RNAi knockdown or expression QTL analysis were not the loci responding to dietary selection. Therefore, loci that respond to the selective pressures of diet cannot be readily predicted a priori from functional analyses. Available freely online through the author-supported open access option. Supporting information is available online at http://www.genetics.org/lookup/suppl/

Research paper thumbnail of Systems Genomics of Metabolic Phenotypes in Wild-Type Drosophila melanogaster

Genetics, 2014

Systems biology is an approach to dissection of complex traits that explicitly recognizes the imp... more Systems biology is an approach to dissection of complex traits that explicitly recognizes the impact of genetic, physiological, and environmental interactions in the generation of phenotypic variation. We describe comprehensive transcriptional and metabolic profiling in Drosophila melanogaster across four diets, finding little overlap in modular architecture. Genotype and genotype-by-diet interactions are a major component of transcriptional variation (24 and 5.3% of the total variation, respectively) while there were no main effects of diet (<1%). Genotype was also a major contributor to metabolomic variation (16%), but in contrast to the transcriptome, diet had a large effect (9%) and the interaction effect was minor (2%) for the metabolome. Yet specific principal components of these molecular phenotypes measured in larvae are strongly correlated with particular metabolic syndrome-like phenotypes such as pupal weight, larval sugar content and triglyceride content, development t...

Research paper thumbnail of Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products

Journal of Experimental Botany, 2002

Infection of leaves of Arabidopsis thaliana with conidial suspensions of the necrotrophic pathoge... more Infection of leaves of Arabidopsis thaliana with conidial suspensions of the necrotrophic pathogen Botrytis cinerea resulted in a large decrease in the level of ascorbic acid and increases in intensity of a single-peak free radical and Fe(III) (g ¼ 4.27) signals in electron paramagnetic resonance (EPR) spectra. These changes were not confined to the spreading lesions or associated areas of chlorosis, but extended to other apparently healthy tissues in the infected leaves. They are, therefore, consistent with the existence of high levels of oxidative stress being generated as a result of the infection process. The expected accompanying increases in levels of the aldehydic products of lipid peroxidation, malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE), were not observed, and in the case of MDA the levels in tissue from infected plants were appreciably lower than in the healthy controls. These last findings are surprising and demonstrate a difference in the response of A. thaliana to infection with B. cinerea compared with tissues from other plant families studied previously.

Research paper thumbnail of Systems Genomics of Metabolic Phenotypes in Wild-Type Drosophila melanogaster

Genetics, 2014

Systems biology is an approach to dissection of complex traits that explicitly recognizes the imp... more Systems biology is an approach to dissection of complex traits that explicitly recognizes the impact of genetic, physiological, and environmental interactions in the generation of phenotypic variation. We describe comprehensive transcriptional and metabolic profiling in Drosophila melanogaster across four diets, finding little overlap in modular architecture. Genotype and genotype-by-diet interactions are a major component of transcriptional variation (24 and 5.3% of the total variation, respectively) while there were no main effects of diet (,1%). Genotype was also a major contributor to metabolomic variation (16%), but in contrast to the transcriptome, diet had a large effect (9%) and the interaction effect was minor (2%) for the metabolome. Yet specific principal components of these molecular phenotypes measured in larvae are strongly correlated with particular metabolic syndrome-like phenotypes such as pupal weight, larval sugar content and triglyceride content, development time, and cardiac arrhythmia in adults. The second principal component of the metabolomic profile is especially informative across these traits with glycine identified as a key loading variable. To further relate this physiological variability to genotypic polymorphism, we performed evolve-and-resequence experiments, finding rapid and replicated changes in gene frequency across hundreds of loci that are specific to each diet. Adaptation to diet is thus highly polygenic. However, loci differentially transcribed across diet or previously identified by RNAi knockdown or expression QTL analysis were not the loci responding to dietary selection. Therefore, loci that respond to the selective pressures of diet cannot be readily predicted a priori from functional analyses. Available freely online through the author-supported open access option. Supporting information is available online at http://www.genetics.org/lookup/suppl/

Log In