Anita Nag - Academia.edu (original) (raw)

Papers by Anita Nag

Research paper thumbnail of Prolonged α-amanitin treatment of cells for studying mutated polymerases causes degradation of DSIF160 and other proteins

RNA (New York, N.Y.), 2012

A useful method for studying the function of the mammalian RNA polymerase II takes advantage of t... more A useful method for studying the function of the mammalian RNA polymerase II takes advantage of the extreme sensitivity of its largest subunit, Rpb1, to α-amanitin. Mutations of interest are introduced into an α-amanitin-resistant version of Rpb1, which is then expressed ectopically in cells. The phenotypes of these cells are then examined after inhibiting the endogenous wild-type polymerase with α-amanitin. Here, we show that cells that are enabled to grow in α-amanitin by expression of an α-amanitin-resistant Rpb1 exhibit changes in cell physiology that can lead to misleading experimental outcomes. The changes we have characterized include the accelerated degradation of some proteins, such as DSIF160, and the reduced rate of synthesis of others. In one series of experiments, we examined an α-amanitin-resistant construct, with a mutant C-terminal domain (CTD), that was unable to direct poly(A)-dependent transcription termination in cells growing in α-amanitin. The potential interpr...

Research paper thumbnail of The RNA tether from the poly(A) signal to the polymerase mediates coupling of transcription to cleavage and polyadenylation

Molecular cell, Jan 9, 2005

We have investigated the mechanism by which transcription accelerates cleavage and polyadenylatio... more We have investigated the mechanism by which transcription accelerates cleavage and polyadenylation in vitro. By using a coupled transcription-processing system, we show that rapid and efficient 3' end processing occurs in the absence of crowding agents like polyvinyl alcohol. The continuity of the RNA from the poly(A) signal down to the polymerase is critical to this processing. If this tether is cut with DNA oligonucleotides and RNaseH during transcription, the efficiency of processing is drastically reduced. The polymerase is known to be an integral part of the cleavage and polyadenylation apparatus. RNA polymerase II pull-down and immobilized template experiments suggest that the role of the tether is to hold the poly(A) signal close to the polymerase during the early stages of processing complex assembly until the complex is sufficiently mature to remain stably associated with the polymerase on its own.

Research paper thumbnail of Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing

RNA Biology, 2012

Nuclear RNA decay factors are involved in many different pathways including rRNA processing, snRN... more Nuclear RNA decay factors are involved in many different pathways including rRNA processing, snRNA and snoRNA biogenesis, pre-mRNA processing, and the rapid decay of cryptic intergenic transcripts. In contrast to its yeast counterpart, the mammalian nuclear decay machinery is largely uncharacterized. Here we report interactions of several putative components of the human nuclear RNA decay machinery, including the TRAMP complex protein Mtr4 and the nuclear exosome constituents PM/Scl-100 and PM/Scl-75, with components of the U4/U6.U5 tri-snRNP complex required for pre-mRNA splicing. The tri-snRNP component Prp31 interacts indirectly with Mtr4 and PM/Scl-100 in a manner that is dependent on the phosphorylation sites in the middle of the protein, while Prp3 and Prp4 interact with the nuclear decay complex independent of Prp31. Together our results suggest recruitment of the nuclear decay machinery to the spliceosome to ensure production of properly spliced mRNA.

Research paper thumbnail of The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase

Nature Structural & Molecular Biology, 2007

Eukaryotic poly(A) signals direct mRNA 3¢-end processing and also pausing and termination of tran... more Eukaryotic poly(A) signals direct mRNA 3¢-end processing and also pausing and termination of transcription. We show that pausing and termination require the processing factor CPSF, which binds the AAUAAA hexamer of the mammalian poly(A) signal. Pausing does not require the RNA polymerase II C-terminal domain (CTD) or the cleavage stimulation factor, CstF, that binds the CTD. Pull-down experiments show that CPSF binds, principally through its 30-kDa subunit, to the body of the polymerase. CPSF can also bind CstF, but this seems to be mutually exclusive with polymerase binding. We suggest that CPSF, while binding the body of the polymerase, scans for hexamers in the extruding RNA. Any encounter with a hexamer triggers pausing. If the hexamer is part of a functional poly(A) signal, CstF is recruited and binds CPSF, causing it to release the polymerase body and move (with CstF) to the CTD.

Research paper thumbnail of The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity

RNA, 2006

In vivo the poly(A) signal not only directs 39-end processing but also controls the rate and exte... more In vivo the poly(A) signal not only directs 39-end processing but also controls the rate and extent of transcription. Thus, upon crossing the poly(A) signal RNA polymerase II first pauses and then terminates. We show that the G/U-rich region of the poly(A) signal, although required for termination in vivo, is not required for poly(A)-dependent pausing either in vivo or in vitro. Consistent with this, neither CstF, which recognizes the G/U-rich element, nor the polymerase CTD, which binds CstF, is required for pausing. The only part of the poly(A) signal required to direct the polymerase to pause is the AAUAAA hexamer. The effect of the hexamer on the polymerase is long lasting-in many situations polymerases over 1 kb downstream of the hexamer continue to exhibit delayed progress down the template in vivo. The hexamer is the first part of the poly(A) signal to emerge from the polymerase and may play a role independent of the rest of the poly(A) signal in paving the way for subsequent events such as 39-end processing and termination of transcription. .

Research paper thumbnail of Suppression of Viral RNA Binding and the Assembly of Infectious Hepatitis C Virus Particles In Vitro by Cyclophilin Inhibitors

Journal of Virology, 2012

Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the H... more Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the HCV replication and assembly machineries. Although its precise mechanism of action is not yet clear, current evidence indicates that its structure and function are regulated by the cellular peptidylprolyl isomerase cyclophilin A (CyPA). CyPA binds to proline residues in the C-terminal half of NS5A, in a distributed fashion, and modulates the structure of the disordered domains II and III. Cyclophilin inhibitors (CPIs), including cyclosporine (CsA) and its nonimmunosuppressive derivatives, inhibit HCV infection of diverse genotypes, both in vitro and in vivo. Here we report a mechanism by which CPIs inhibit HCV infection and demonstrate that CPIs can suppress HCV assembly in addition to their well-documented inhibitory effect on RNA replication. Although the interaction between NS5A and other viral proteins is not affected by CPIs, RNA binding by NS5A in cell culture-based HCV (HCVcc)infected cells is significantly inhibited by CPI treatment, and sensitivity of RNA binding is correlated with previously characterized CyPA dependence or CsA sensitivity of HCV mutants. Furthermore, the difference in CyPA dependence between a subgenomic and a full-length replicon of JFH-1 was due, at least in part, to an additional role that CyPA plays in HCV assembly, a conclusion that is supported by experiments with the clinical CPI alisporivir. The host-directed nature and the ability to interfere with more than one step in the HCV life cycle may result in a higher genetic barrier to resistance for this class of HCV inhibitors.

Research paper thumbnail of A major determinant of cyclophilin dependence and cyclosporine susceptibility of hepatitis C virus identified by a genetic approach

PLoS pathogens, 2010

Since the advent of genome-wide small interfering RNA screening, large numbers of cellular cofact... more Since the advent of genome-wide small interfering RNA screening, large numbers of cellular cofactors important for viral infection have been discovered at a rapid pace, but the viral targets and the mechanism of action for many of these cofactors remain undefined. One such cofactor is cyclophilin A (CyPA), upon which hepatitis C virus (HCV) replication critically depends. Here we report a new genetic selection scheme that identified a major viral determinant of HCV's dependence on CyPA and susceptibility to cyclosporine A. We selected mutant viruses that were able to infect CyPA-knockdown cells which were refractory to infection by wild-type HCV produced in cell culture. Five independent selections revealed related mutations in a single dipeptide motif (D316 and Y317) located in a proline-rich region of NS5A domain II, which has been implicated in CyPA binding. Engineering the mutations into wild-type HCV fully recapitulated the CyPA-independent and CsA-resistant phenotype and ...

Research paper thumbnail of A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell

Viruses, 2016

Viral infection initiates an array of changes in host gene expression. Many viruses dampen host p... more Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.

Research paper thumbnail of Prolonged α-amanitin treatment of cells for studying mutated polymerases causes degradation of DSIF160 and other proteins

RNA (New York, N.Y.), 2012

A useful method for studying the function of the mammalian RNA polymerase II takes advantage of t... more A useful method for studying the function of the mammalian RNA polymerase II takes advantage of the extreme sensitivity of its largest subunit, Rpb1, to α-amanitin. Mutations of interest are introduced into an α-amanitin-resistant version of Rpb1, which is then expressed ectopically in cells. The phenotypes of these cells are then examined after inhibiting the endogenous wild-type polymerase with α-amanitin. Here, we show that cells that are enabled to grow in α-amanitin by expression of an α-amanitin-resistant Rpb1 exhibit changes in cell physiology that can lead to misleading experimental outcomes. The changes we have characterized include the accelerated degradation of some proteins, such as DSIF160, and the reduced rate of synthesis of others. In one series of experiments, we examined an α-amanitin-resistant construct, with a mutant C-terminal domain (CTD), that was unable to direct poly(A)-dependent transcription termination in cells growing in α-amanitin. The potential interpr...

Research paper thumbnail of The RNA tether from the poly(A) signal to the polymerase mediates coupling of transcription to cleavage and polyadenylation

Molecular cell, Jan 9, 2005

We have investigated the mechanism by which transcription accelerates cleavage and polyadenylatio... more We have investigated the mechanism by which transcription accelerates cleavage and polyadenylation in vitro. By using a coupled transcription-processing system, we show that rapid and efficient 3' end processing occurs in the absence of crowding agents like polyvinyl alcohol. The continuity of the RNA from the poly(A) signal down to the polymerase is critical to this processing. If this tether is cut with DNA oligonucleotides and RNaseH during transcription, the efficiency of processing is drastically reduced. The polymerase is known to be an integral part of the cleavage and polyadenylation apparatus. RNA polymerase II pull-down and immobilized template experiments suggest that the role of the tether is to hold the poly(A) signal close to the polymerase during the early stages of processing complex assembly until the complex is sufficiently mature to remain stably associated with the polymerase on its own.

Research paper thumbnail of Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing

RNA Biology, 2012

Nuclear RNA decay factors are involved in many different pathways including rRNA processing, snRN... more Nuclear RNA decay factors are involved in many different pathways including rRNA processing, snRNA and snoRNA biogenesis, pre-mRNA processing, and the rapid decay of cryptic intergenic transcripts. In contrast to its yeast counterpart, the mammalian nuclear decay machinery is largely uncharacterized. Here we report interactions of several putative components of the human nuclear RNA decay machinery, including the TRAMP complex protein Mtr4 and the nuclear exosome constituents PM/Scl-100 and PM/Scl-75, with components of the U4/U6.U5 tri-snRNP complex required for pre-mRNA splicing. The tri-snRNP component Prp31 interacts indirectly with Mtr4 and PM/Scl-100 in a manner that is dependent on the phosphorylation sites in the middle of the protein, while Prp3 and Prp4 interact with the nuclear decay complex independent of Prp31. Together our results suggest recruitment of the nuclear decay machinery to the spliceosome to ensure production of properly spliced mRNA.

Research paper thumbnail of The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase

Nature Structural & Molecular Biology, 2007

Eukaryotic poly(A) signals direct mRNA 3¢-end processing and also pausing and termination of tran... more Eukaryotic poly(A) signals direct mRNA 3¢-end processing and also pausing and termination of transcription. We show that pausing and termination require the processing factor CPSF, which binds the AAUAAA hexamer of the mammalian poly(A) signal. Pausing does not require the RNA polymerase II C-terminal domain (CTD) or the cleavage stimulation factor, CstF, that binds the CTD. Pull-down experiments show that CPSF binds, principally through its 30-kDa subunit, to the body of the polymerase. CPSF can also bind CstF, but this seems to be mutually exclusive with polymerase binding. We suggest that CPSF, while binding the body of the polymerase, scans for hexamers in the extruding RNA. Any encounter with a hexamer triggers pausing. If the hexamer is part of a functional poly(A) signal, CstF is recruited and binds CPSF, causing it to release the polymerase body and move (with CstF) to the CTD.

Research paper thumbnail of The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity

RNA, 2006

In vivo the poly(A) signal not only directs 39-end processing but also controls the rate and exte... more In vivo the poly(A) signal not only directs 39-end processing but also controls the rate and extent of transcription. Thus, upon crossing the poly(A) signal RNA polymerase II first pauses and then terminates. We show that the G/U-rich region of the poly(A) signal, although required for termination in vivo, is not required for poly(A)-dependent pausing either in vivo or in vitro. Consistent with this, neither CstF, which recognizes the G/U-rich element, nor the polymerase CTD, which binds CstF, is required for pausing. The only part of the poly(A) signal required to direct the polymerase to pause is the AAUAAA hexamer. The effect of the hexamer on the polymerase is long lasting-in many situations polymerases over 1 kb downstream of the hexamer continue to exhibit delayed progress down the template in vivo. The hexamer is the first part of the poly(A) signal to emerge from the polymerase and may play a role independent of the rest of the poly(A) signal in paving the way for subsequent events such as 39-end processing and termination of transcription. .

Research paper thumbnail of Suppression of Viral RNA Binding and the Assembly of Infectious Hepatitis C Virus Particles In Vitro by Cyclophilin Inhibitors

Journal of Virology, 2012

Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the H... more Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the HCV replication and assembly machineries. Although its precise mechanism of action is not yet clear, current evidence indicates that its structure and function are regulated by the cellular peptidylprolyl isomerase cyclophilin A (CyPA). CyPA binds to proline residues in the C-terminal half of NS5A, in a distributed fashion, and modulates the structure of the disordered domains II and III. Cyclophilin inhibitors (CPIs), including cyclosporine (CsA) and its nonimmunosuppressive derivatives, inhibit HCV infection of diverse genotypes, both in vitro and in vivo. Here we report a mechanism by which CPIs inhibit HCV infection and demonstrate that CPIs can suppress HCV assembly in addition to their well-documented inhibitory effect on RNA replication. Although the interaction between NS5A and other viral proteins is not affected by CPIs, RNA binding by NS5A in cell culture-based HCV (HCVcc)infected cells is significantly inhibited by CPI treatment, and sensitivity of RNA binding is correlated with previously characterized CyPA dependence or CsA sensitivity of HCV mutants. Furthermore, the difference in CyPA dependence between a subgenomic and a full-length replicon of JFH-1 was due, at least in part, to an additional role that CyPA plays in HCV assembly, a conclusion that is supported by experiments with the clinical CPI alisporivir. The host-directed nature and the ability to interfere with more than one step in the HCV life cycle may result in a higher genetic barrier to resistance for this class of HCV inhibitors.

Research paper thumbnail of A major determinant of cyclophilin dependence and cyclosporine susceptibility of hepatitis C virus identified by a genetic approach

PLoS pathogens, 2010

Since the advent of genome-wide small interfering RNA screening, large numbers of cellular cofact... more Since the advent of genome-wide small interfering RNA screening, large numbers of cellular cofactors important for viral infection have been discovered at a rapid pace, but the viral targets and the mechanism of action for many of these cofactors remain undefined. One such cofactor is cyclophilin A (CyPA), upon which hepatitis C virus (HCV) replication critically depends. Here we report a new genetic selection scheme that identified a major viral determinant of HCV's dependence on CyPA and susceptibility to cyclosporine A. We selected mutant viruses that were able to infect CyPA-knockdown cells which were refractory to infection by wild-type HCV produced in cell culture. Five independent selections revealed related mutations in a single dipeptide motif (D316 and Y317) located in a proline-rich region of NS5A domain II, which has been implicated in CyPA binding. Engineering the mutations into wild-type HCV fully recapitulated the CyPA-independent and CsA-resistant phenotype and ...

Research paper thumbnail of A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell

Viruses, 2016

Viral infection initiates an array of changes in host gene expression. Many viruses dampen host p... more Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.