Irina Nazarenko - Academia.edu (original) (raw)
Papers by Irina Nazarenko
Journal of Extracellular Vesicles, 2018
Biomedicines
Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 80... more Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 800 nm that are released by the cells into the extracellular space; they have attracted interest as easily available biomarkers for cancer diagnostics. In this study, EVs from plasma of control and prostate cancer patients were fractionated by differential centrifugation at 5000× g, 12,000× g and 120,000× g. The remaining supernatants were purified by ultrafiltration to produce EV-depleted free-circulating (fc) fractions. Spontaneous Raman and surface-enhanced Raman spectroscopy (SERS) at 785 nm excitation using silver nanoparticles (AgNPs) were employed as label-free techniques to collect fingerprint spectra and identify the fractions that best discriminate between control and cancer patients. SERS spectra from 10 µL droplets showed an enhanced Raman signature of EV-enriched fractions that were much more intense for cancer patients than controls. The Raman spectra of dehydrated pellets of...
Tumor Liquid Biopsies
Extracellular micro- and nanoscale membrane vesicles produced by different cells progressively at... more Extracellular micro- and nanoscale membrane vesicles produced by different cells progressively attract the attention of the scientific community. They function as mediators of intercellular communication and transport genetic material and signaling molecules between the cells. In the context of keeping homeostasis, the extracellular vesicles contribute to the regulation of various systemic and local processes. Vesicles released by the tumor and activated stromal cells exhibit multiple functions including support of tumor growth, preparation of the pre-metastatic niches, and immune suppression. Considerable progress has been made regarding the criteria of classification of the vesicles according to their origin, content, and function: Exosomes, microvesicles, also referred to as microparticles or ectosomes, and large oncosomes were defined as actively released vesicles. Additionally, apoptotic bodies represented by a highly heterogeneous population of particles produced during apoptosis, the programmed cell death, should be considered. Because the majority of isolation techniques do not allow the separation of different types of vesicles, a joined term "extracellular vesicles" (EVs) was recommended by the ISEV community for the definition of vesicles isolated from either the cell culture supernatants or the body fluids. Because EV content reflects the content of the cell of origin, multiple studies on EVs from body fluids in the context of cancer diagnosis, prediction, and prognosis were performed, actively supporting their high potential as a biomarker source. Here, we review the leading achievements in EV analysis from body fluids, defined as EV-based liquid biopsy, and provide an overview of the main EV constituents: EV surface proteins, intravesicular soluble proteins, EV RNA including mRNA and miRNA, and EV DNA as potential biomarkers. Furthermore, we discuss recent developments in technology for quantitative EV analysis in the clinical setting and future perspectives toward miniaturized high-precision liquid biopsy approaches.
Small
One of the rapidly developing directions of biomedical research and nanotechnology is the design ... more One of the rapidly developing directions of biomedical research and nanotechnology is the design of new delivery systems, in particular, for the delivery of genetic information. Majority of the established immortalized cells lines broadly used by the scientific community allow efficient RNA and DNA transfer using lipid-, polysaccharide-, polymer-, or calcium precipitation-based commercially available reagents. However, manipulation of gene expression in primary cells, including adult and embryonic stem cells and cancer stem cells representing attractive tools for regenerative medicine, cancer therapy, and immune disease treatment, remains still an Efficient delivery of genetic material to primary cells remains challenging. Here, efficient transfer of genetic material is presented using synthetic biodegradable nanocarriers, resembling extracellular vesicles in their biomechanical properties. This is based on two main technological achievements: generation of soft biodegradable polyelectrolyte capsules in nanosize and efficient application of the nanocapsules for co-transfer of different RNAs to tumor cell lines and primary cells, including hematopoietic progenitor cells and primary T cells. Near to 100% efficiency is reached using only 2.5 × 10 −4 pmol of siRNA, and 1 × 10 −3 nmol of mRNA per cell, which is several magnitude orders below the amounts reported for any of methods published so far. The data show that biodegradable nanocapsules represent a universal and highly efficient biomimetic platform for the transfer of genetic material with the utmost potential to revolutionize gene transfer technology in vitro and in vivo.
Scientific reports, Jan 19, 2017
MicroRNAs (miRNAs) are class of small RNA molecules with major impact on gene regulation. We anal... more MicroRNAs (miRNAs) are class of small RNA molecules with major impact on gene regulation. We analyzed the potential of miRNAs secreted from pre-implantation embryos into the embryonic culture media as biomarkers to predict successful pregnancy. Using microarray analysis, we profiled the miRNome of the 56 spent culture media (SCM) after embryos transfer and found a total of 621 miRNAs in the SCM. On average, we detected 163 miRNAs in SCM of samples with failed pregnancies, but only 149 SCM miRNAs of embryos leading to pregnancies. MiR-634 predicted an embryo transfer leading to a positive pregnancy with an accuracy of 71% and a sensitivity of 85%. Among the 621 miRNAs, 102 (16.4%) showed a differential expression between positive and negative outcome of pregnancy with miR-29c-3p as the most significantly differentially expressed miRNA. The number of extracellular vehicles was lower in SCM with positive outcomes (3.8 × 109/mL EVs), as compared to a negative outcome (7.35 × 109/mL EVs)...
Frontiers in genetics, 2017
Extracellular vesicles (EVs) are heterogeneous populations of nano- and micro-sized vesicles secr... more Extracellular vesicles (EVs) are heterogeneous populations of nano- and micro-sized vesicles secreted by various cell types. There is mounting evidence that EVs have widespread roles in transporting proteins, lipids, and nucleic acids between cells and serve as mediators of intercellular communication. EVs secreted from stem cells could function as paracrine factors, and appear to mimic and recapitulate several features of their secreting cells. EV-mediated transport of regulatory RNAs provides a novel source of trans-regulation between cells. As such, stem cells have evolved unique forms of paracrine mechanisms for recapitulating their potencies with specialized functions by transporting non-coding RNAs (ncRNAs) via EVs. This includes the dissemination of stem cell-derived EV-ncRNAs and their regulatory effects elicited in differentiation, self-renewal, pluripotency, and the induction of reparative programs. Here, we summarize and discuss the therapeutic effects of mesenchymal stem...
ACS nano, Apr 15, 2016
Recent research has demonstrated that all body fluids assessed contain substantial amounts of ves... more Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedl...
Analyzing the growth of fibrosarcoma lines derived from IL-1α–, IL-1β–, or IL-1αβ–knockout (−/−) ... more Analyzing the growth of fibrosarcoma lines derived from IL-1α–, IL-1β–, or IL-1αβ–knockout (−/−) mice in the immunocompetent host revealed that tumor-derived IL-1α and IL-1β exert strong and opposing effects on immune response induction, which prohibited the evaluation of a potential impact on tumorigenicity. Therefore, in vivo growth of IL-1–deficient tumor lines was evaluated in nu/nu mice and was compared with in vitro growth characteristics. All IL-1–deficient fibrosarcoma lines grow in immunocompromised mice. However, IL-1α−/−β–competent (comp) lines grow more aggressively, efficiently induce angiogenesis, and recruit inflammatory cells. Despite stronger tumorigenicity of IL-1βcomp lines, IL-1α strengthens anchorage-independent growth, but both IL-1α and IL-1β support drug resistance. Corresponding to the aggressive growth, IL-1βcomp cells display increased matrix adhesion, motility, and cable formation on matrigel, likely supported by elevated αv/β3 and matrix metalloproteinas...
Journal of Extracellular Vesicles, 2012
Extracellular micro-and nano-scale membrane vesicles produced by different cells are recognised a... more Extracellular micro-and nano-scale membrane vesicles produced by different cells are recognised as an essential entity of physiological fluids in a variety of organisms and function as mediators of intercellular communication employed for the regulation of multiple systemic and local processes. In the last decade, an exponential amount of experimental work was dedicated to exploring the biogenesis and secretion mechanisms, physiological and pathological functions and potential applications of the extracellular vesicles (EVs). Noteworthy is the large heterogeneity of in vitro and in vivo models applied, technical approaches developed in these studies and the diversity of designations assigned to different or similar types of EVs. Hence, there is a clear necessity for a uniform nomenclature and standardisation of methods to isolate and characterise these vesicles. In April 2012, the first meeting of the International Society for Extracellular Vesicles (ISEV) took place bringing together this exponentially grown scientific community. The
The Journal of Immunology, 2007
Rho GTPases orchestrate signaling pathways leading to cell migration. Their function depends on G... more Rho GTPases orchestrate signaling pathways leading to cell migration. Their function depends on GTP loading and isoprenylation by geranylgeranyl pyrophosphate (GGpp). In this study, we show that in human T cells, geranylgeranylation-and not GTP loading-is necessary for RhoA-mediated downstream events. As a result of GGpp depletion with the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin, RhoA was sequestered from the membrane to the cytosol and, notwithstanding increased GTP loading, the constitutive activation of its substrate Rho-associated coiled-coil protein kinase-1 was blocked. In line with this, T cells expressing increased GTP-RhoA failed to form an intact cytoskeleton and to migrate toward a chemokine gradient. In vivo treatment with atorvastatin in the rodent model of multiple sclerosis markedly decreased the capacity of activated T cells to traffic within the brain, as demonstrated by multiphoton analysis. Thus, tethering of RhoA to the membrane by GGpp is determinant for T cell migration and provides a mechanism for preventing T cell infiltration into inflamed compartments by 3-hydroxy-3methylglutaryl-CoA reductase inhibitors,
Journal of Cell Science, 2007
HRSL3 (also known as H-REV107-1) belongs to a class II tumor suppressor gene family and is downre... more HRSL3 (also known as H-REV107-1) belongs to a class II tumor suppressor gene family and is downregulated in several human tumors including ovarian carcinomas. To unravel the mechanism of HRSL3 tumor suppressor action, we performed a yeast two-hybrid screen and identified the α-isoform of the regulatory subunit A of protein phosphatase 2A (PR65α) as a new interaction partner of HRSL3. Interaction between HRSL3 and PR65α was confirmed in vitro and by co-immunoprecipitation in mammalian cells. We demonstrate that HRSL3 binds to the endogenous PR65α, thereby partially sequestering the catalytic subunit PR36 from the PR65 protein complex, and inhibiting PP2A catalytic activity. Furthermore, binding of HRSL3 to PR65 induces apoptosis in ovarian carcinoma cells in a caspase-dependent manner. Using several mutant HRSL3 constructs, we identified the N-terminal proline-rich region within the HRSL3 protein as the domain that is relevant for both binding of PR65α and induction of programmed cel...
International Journal of Cancer, 2005
The TIG3 gene is a retinoic acid inducible class II tumor suppressor gene downregulated in severa... more The TIG3 gene is a retinoic acid inducible class II tumor suppressor gene downregulated in several human tumors and malignant cell lines. Diminished TIG3 expression correlates with decreased differentiation whereas forced expression of TIG3 suppresses oncogenic signaling pathways and subsequently induces differentiation or apoptosis in tumor cells. Analysis of TIG3 mRNA expression in a large set of cDNA pools derived from matched tumor and normal human tissues showed a significant downregulation of TIG3 in 29% of the cDNA samples obtained from ovarian carcinomas. Using in situ hybridization, we demonstrated expression of TIG3 in the epithelial lining of 7 normal ovaries but loss of TIG3 expression in 15/19 of human ovarian carcinoma tissues. In SKOV-3, CAOV-3 and ES-2 ovarian carcinoma cell lines, downregulation of TIG3 mRNA was reversible and dependent on an activated MEK-ERK signaling pathway. Re-expression of TIG3 mRNA in these cells upon specific interference with the MEK-pathway was correlated with growth inhibition of the cells. In OVCAR-3 and A27/80 ovarian carcinoma cells, TIG3 suppression is MEK-ERK independent, but expression could be reconstituted upon interferon gamma (IFNgamma) induction. Overexpression of TIG3 in A27/80 ovarian carcinoma cells significantly impaired cell growth and despite increased mRNA levels, TIG3 protein was hardly detectable. These results suggest that TIG3 is negatively regulated by an activated MEK-ERK signaling pathway. Further mechanisms must interfere with TIG3 expression that are independent of MEK and partially include interferon-responsive components.
International Journal of Cancer, 2007
The glycosylphosphatidylinositol-anchored molecule C4.4A, which shares structural features with u... more The glycosylphosphatidylinositol-anchored molecule C4.4A, which shares structural features with uPAR, is frequently expressed on carcinomas with upregulated expression during tumor progression. Moreover, rare expression on nontransformed epithelial cells is strongly increased during tissue remodeling, e.g., during wound healing. This strictly regulated expression prompted us to define transcriptional activation of the C4.4A gene. C4.4A transcription was analyzed in 2 syngenic rat tumor cell lines with low or high metastatic potential, respectively. Though genomic C4.4A DNA was present in both lines, C4.4A mRNA and transcription of a reporter construct containing the C4.4A promoter was only observed in the metastasizing subline. Deletions and point mutations in the C4.4A promoter-driven reporter construct revealed that activation of the TATA-less, GC-rich core promoter (-1 to -50 bp) does not suffice to initiate transcription that requires coactivation of a proximal response element (-71 to -88 bp) and can be further increased by more distal response elements (-89 to -133 bp). Mobility-shift and cotransfection studies showed that Sp3 binding enhances C4.4A transcription, whereas potential Sp1 binding sites were ineffective. C4.4A transcription essentially requires C/EBPbeta binding to a TRE/CCAAT composite element (-71 to -88 bp) as measured by ChIP assay. C4.4A transcription is strikingly enhanced by cotransfection with JunD or c-Jun, such that C4.4A is most strongly transcribed even in the C4.4A-negative tumor cell line after cotransfection with C/EBPbeta plus JunD or c-Jun. Thus, upregulation of C/EBPbeta during tumor progression and wound repair may well provide a sufficient trigger for transcription of the C4.4A gene.
Gene Expression Patterns, 2013
Tetraspanins comprise a large family of integral membrane proteins involved in the regulation of ... more Tetraspanins comprise a large family of integral membrane proteins involved in the regulation of cell adhesion, migration and fusion. In humans it consists of 33 members divided in four subfamilies. Here, we examined the spatial and temporal gene expression of four related tetraspanins during the embryonic development of Xenopus laevis by quantitative real-time PCR and in situ hybridization: Tspan3 (encoded by the gene Tm4sf8 gene) Tspan4 (encoded by the gene Tm4sf7), Tspan5 (encoded by the gene Tm4sf9) and Tspan7 (encoded by the gene Tm4sf2). These genes appeared first in the vertebrates during the evolution and are conserved across different species. In humans, they were associated with several diseases such as sclerosis, mental retardation and cancer; however their physiological role remained unclear. This work provides a comprehensive comparative analysis of the expression of these tetraspanins during the development of X. laevis. The more closely related tetraspanins Tspan3, Tspan4 and Tspan7 exhibited very similar spatial expression patterns, albeit differing in their temporal occurrence. The corresponding transcripts were found in the dorsal animal ectoderm at blastula stage. At early tailbud stages (stage 26) the genes were expressed in the migrating cranial neural crest located in the somites, developing eye, brain, and in otic vesicles. In contrast, Tspan5 appeared first at later stages of development and was detected prominently in the notochord. These data support close relatedness of Tspan3, Tspan4 and Tspan7. The expression of these tetraspanins in the cells with a high migratory potential, e.g. neural crest cells, suggests their role in the regulation of migration processes, characteristic for tetraspanin family members, during development. Similarity of the expression profiles might indicate at least partial functional redundancy, which is in concordance with earlier findings of tissue-limited or absent phenotypes in the knockdown studies of tetraspanins family members performed.
Diagnostic Microbiology and Infectious Disease, 2011
Thermophilic helicase dependent amplification (tHDA), which employs helicase to unwind double-str... more Thermophilic helicase dependent amplification (tHDA), which employs helicase to unwind double-stranded DNA at constant temperature, is a relatively new isothermal nucleic acid amplification technology. In this study, the development and optimization of a 4-plex tHDA assay for detection of Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are described. tHDA is combined with sequencespecific sample preparation on magnetic beads and homogeneous endpoint fluorescence detection using dual-labeled probes. This 4-plex tHDA assay was applied to the detection of 2 genes on CT and a multicopy gene on NG in the presence of an internal control. The assay showed high analytical sensitivity and specificity of simultaneous CT/NG detection and is compatible with a wide variety of sample types and media. The isothermal reaction conditions and homogeneous endpoint detection utilized in this assay are well suited for laboratory automation and high-throughput screening applications as well as for point-of-care testing.
The International Journal …, 2011
Exosomes are most important intercellular communicators and tetraspanins/tetraspanin-complexes ha... more Exosomes are most important intercellular communicators and tetraspanins/tetraspanin-complexes have been suggested to play an important role in exosomal target cell selection. We have shown that only exosomes expressing a Tspan8CD49d complex preferentially ...
Oncogene, 2002
Résumé/Abstract H-rev107-1 is a growth inhibitory RAS target gene capable of suppressing anchorag... more Résumé/Abstract H-rev107-1 is a growth inhibitory RAS target gene capable of suppressing anchorage independent growth in vitro and in vivo. Using a tumour tissue array with 241 matched tumour and normal tissue cDNA pools, we found down-regulation of H-REV107-...
Cell Communication and Signaling, 2011
Background The incidence of cancer in patients with neurological diseases, who have been treated ... more Background The incidence of cancer in patients with neurological diseases, who have been treated with LiCl, is below average. LiCl is a well-established inhibitor of Glycogen synthase kinase-3, a kinase that controls several cellular processes, among which is the degradation of the tumour suppressor protein p53. We therefore wondered whether LiCl induces p53-dependent cell death in cancer cell lines and experimental tumours. Results Here we show that LiCl induces apoptosis of tumour cells both in vitro and in vivo. Cell death was accompanied by cleavage of PARP and Caspases-3, -8 and -10. LiCl-induced cell death was not dependent on p53, but was augmented by its presence. Treatment of tumour cells with LiCl strongly increased TNF-α and FasL expression. Inhibition of TNF-α induction using siRNA or inhibition of FasL binding to its receptor by the Nok-1 antibody potently reduced LiCl-dependent cleavage of Caspase-3 and increased cell survival. Treatment of xenografted rats with LiCl s...
Journal of Extracellular Vesicles, 2018
Biomedicines
Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 80... more Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 800 nm that are released by the cells into the extracellular space; they have attracted interest as easily available biomarkers for cancer diagnostics. In this study, EVs from plasma of control and prostate cancer patients were fractionated by differential centrifugation at 5000× g, 12,000× g and 120,000× g. The remaining supernatants were purified by ultrafiltration to produce EV-depleted free-circulating (fc) fractions. Spontaneous Raman and surface-enhanced Raman spectroscopy (SERS) at 785 nm excitation using silver nanoparticles (AgNPs) were employed as label-free techniques to collect fingerprint spectra and identify the fractions that best discriminate between control and cancer patients. SERS spectra from 10 µL droplets showed an enhanced Raman signature of EV-enriched fractions that were much more intense for cancer patients than controls. The Raman spectra of dehydrated pellets of...
Tumor Liquid Biopsies
Extracellular micro- and nanoscale membrane vesicles produced by different cells progressively at... more Extracellular micro- and nanoscale membrane vesicles produced by different cells progressively attract the attention of the scientific community. They function as mediators of intercellular communication and transport genetic material and signaling molecules between the cells. In the context of keeping homeostasis, the extracellular vesicles contribute to the regulation of various systemic and local processes. Vesicles released by the tumor and activated stromal cells exhibit multiple functions including support of tumor growth, preparation of the pre-metastatic niches, and immune suppression. Considerable progress has been made regarding the criteria of classification of the vesicles according to their origin, content, and function: Exosomes, microvesicles, also referred to as microparticles or ectosomes, and large oncosomes were defined as actively released vesicles. Additionally, apoptotic bodies represented by a highly heterogeneous population of particles produced during apoptosis, the programmed cell death, should be considered. Because the majority of isolation techniques do not allow the separation of different types of vesicles, a joined term "extracellular vesicles" (EVs) was recommended by the ISEV community for the definition of vesicles isolated from either the cell culture supernatants or the body fluids. Because EV content reflects the content of the cell of origin, multiple studies on EVs from body fluids in the context of cancer diagnosis, prediction, and prognosis were performed, actively supporting their high potential as a biomarker source. Here, we review the leading achievements in EV analysis from body fluids, defined as EV-based liquid biopsy, and provide an overview of the main EV constituents: EV surface proteins, intravesicular soluble proteins, EV RNA including mRNA and miRNA, and EV DNA as potential biomarkers. Furthermore, we discuss recent developments in technology for quantitative EV analysis in the clinical setting and future perspectives toward miniaturized high-precision liquid biopsy approaches.
Small
One of the rapidly developing directions of biomedical research and nanotechnology is the design ... more One of the rapidly developing directions of biomedical research and nanotechnology is the design of new delivery systems, in particular, for the delivery of genetic information. Majority of the established immortalized cells lines broadly used by the scientific community allow efficient RNA and DNA transfer using lipid-, polysaccharide-, polymer-, or calcium precipitation-based commercially available reagents. However, manipulation of gene expression in primary cells, including adult and embryonic stem cells and cancer stem cells representing attractive tools for regenerative medicine, cancer therapy, and immune disease treatment, remains still an Efficient delivery of genetic material to primary cells remains challenging. Here, efficient transfer of genetic material is presented using synthetic biodegradable nanocarriers, resembling extracellular vesicles in their biomechanical properties. This is based on two main technological achievements: generation of soft biodegradable polyelectrolyte capsules in nanosize and efficient application of the nanocapsules for co-transfer of different RNAs to tumor cell lines and primary cells, including hematopoietic progenitor cells and primary T cells. Near to 100% efficiency is reached using only 2.5 × 10 −4 pmol of siRNA, and 1 × 10 −3 nmol of mRNA per cell, which is several magnitude orders below the amounts reported for any of methods published so far. The data show that biodegradable nanocapsules represent a universal and highly efficient biomimetic platform for the transfer of genetic material with the utmost potential to revolutionize gene transfer technology in vitro and in vivo.
Scientific reports, Jan 19, 2017
MicroRNAs (miRNAs) are class of small RNA molecules with major impact on gene regulation. We anal... more MicroRNAs (miRNAs) are class of small RNA molecules with major impact on gene regulation. We analyzed the potential of miRNAs secreted from pre-implantation embryos into the embryonic culture media as biomarkers to predict successful pregnancy. Using microarray analysis, we profiled the miRNome of the 56 spent culture media (SCM) after embryos transfer and found a total of 621 miRNAs in the SCM. On average, we detected 163 miRNAs in SCM of samples with failed pregnancies, but only 149 SCM miRNAs of embryos leading to pregnancies. MiR-634 predicted an embryo transfer leading to a positive pregnancy with an accuracy of 71% and a sensitivity of 85%. Among the 621 miRNAs, 102 (16.4%) showed a differential expression between positive and negative outcome of pregnancy with miR-29c-3p as the most significantly differentially expressed miRNA. The number of extracellular vehicles was lower in SCM with positive outcomes (3.8 × 109/mL EVs), as compared to a negative outcome (7.35 × 109/mL EVs)...
Frontiers in genetics, 2017
Extracellular vesicles (EVs) are heterogeneous populations of nano- and micro-sized vesicles secr... more Extracellular vesicles (EVs) are heterogeneous populations of nano- and micro-sized vesicles secreted by various cell types. There is mounting evidence that EVs have widespread roles in transporting proteins, lipids, and nucleic acids between cells and serve as mediators of intercellular communication. EVs secreted from stem cells could function as paracrine factors, and appear to mimic and recapitulate several features of their secreting cells. EV-mediated transport of regulatory RNAs provides a novel source of trans-regulation between cells. As such, stem cells have evolved unique forms of paracrine mechanisms for recapitulating their potencies with specialized functions by transporting non-coding RNAs (ncRNAs) via EVs. This includes the dissemination of stem cell-derived EV-ncRNAs and their regulatory effects elicited in differentiation, self-renewal, pluripotency, and the induction of reparative programs. Here, we summarize and discuss the therapeutic effects of mesenchymal stem...
ACS nano, Apr 15, 2016
Recent research has demonstrated that all body fluids assessed contain substantial amounts of ves... more Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedl...
Analyzing the growth of fibrosarcoma lines derived from IL-1α–, IL-1β–, or IL-1αβ–knockout (−/−) ... more Analyzing the growth of fibrosarcoma lines derived from IL-1α–, IL-1β–, or IL-1αβ–knockout (−/−) mice in the immunocompetent host revealed that tumor-derived IL-1α and IL-1β exert strong and opposing effects on immune response induction, which prohibited the evaluation of a potential impact on tumorigenicity. Therefore, in vivo growth of IL-1–deficient tumor lines was evaluated in nu/nu mice and was compared with in vitro growth characteristics. All IL-1–deficient fibrosarcoma lines grow in immunocompromised mice. However, IL-1α−/−β–competent (comp) lines grow more aggressively, efficiently induce angiogenesis, and recruit inflammatory cells. Despite stronger tumorigenicity of IL-1βcomp lines, IL-1α strengthens anchorage-independent growth, but both IL-1α and IL-1β support drug resistance. Corresponding to the aggressive growth, IL-1βcomp cells display increased matrix adhesion, motility, and cable formation on matrigel, likely supported by elevated αv/β3 and matrix metalloproteinas...
Journal of Extracellular Vesicles, 2012
Extracellular micro-and nano-scale membrane vesicles produced by different cells are recognised a... more Extracellular micro-and nano-scale membrane vesicles produced by different cells are recognised as an essential entity of physiological fluids in a variety of organisms and function as mediators of intercellular communication employed for the regulation of multiple systemic and local processes. In the last decade, an exponential amount of experimental work was dedicated to exploring the biogenesis and secretion mechanisms, physiological and pathological functions and potential applications of the extracellular vesicles (EVs). Noteworthy is the large heterogeneity of in vitro and in vivo models applied, technical approaches developed in these studies and the diversity of designations assigned to different or similar types of EVs. Hence, there is a clear necessity for a uniform nomenclature and standardisation of methods to isolate and characterise these vesicles. In April 2012, the first meeting of the International Society for Extracellular Vesicles (ISEV) took place bringing together this exponentially grown scientific community. The
The Journal of Immunology, 2007
Rho GTPases orchestrate signaling pathways leading to cell migration. Their function depends on G... more Rho GTPases orchestrate signaling pathways leading to cell migration. Their function depends on GTP loading and isoprenylation by geranylgeranyl pyrophosphate (GGpp). In this study, we show that in human T cells, geranylgeranylation-and not GTP loading-is necessary for RhoA-mediated downstream events. As a result of GGpp depletion with the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin, RhoA was sequestered from the membrane to the cytosol and, notwithstanding increased GTP loading, the constitutive activation of its substrate Rho-associated coiled-coil protein kinase-1 was blocked. In line with this, T cells expressing increased GTP-RhoA failed to form an intact cytoskeleton and to migrate toward a chemokine gradient. In vivo treatment with atorvastatin in the rodent model of multiple sclerosis markedly decreased the capacity of activated T cells to traffic within the brain, as demonstrated by multiphoton analysis. Thus, tethering of RhoA to the membrane by GGpp is determinant for T cell migration and provides a mechanism for preventing T cell infiltration into inflamed compartments by 3-hydroxy-3methylglutaryl-CoA reductase inhibitors,
Journal of Cell Science, 2007
HRSL3 (also known as H-REV107-1) belongs to a class II tumor suppressor gene family and is downre... more HRSL3 (also known as H-REV107-1) belongs to a class II tumor suppressor gene family and is downregulated in several human tumors including ovarian carcinomas. To unravel the mechanism of HRSL3 tumor suppressor action, we performed a yeast two-hybrid screen and identified the α-isoform of the regulatory subunit A of protein phosphatase 2A (PR65α) as a new interaction partner of HRSL3. Interaction between HRSL3 and PR65α was confirmed in vitro and by co-immunoprecipitation in mammalian cells. We demonstrate that HRSL3 binds to the endogenous PR65α, thereby partially sequestering the catalytic subunit PR36 from the PR65 protein complex, and inhibiting PP2A catalytic activity. Furthermore, binding of HRSL3 to PR65 induces apoptosis in ovarian carcinoma cells in a caspase-dependent manner. Using several mutant HRSL3 constructs, we identified the N-terminal proline-rich region within the HRSL3 protein as the domain that is relevant for both binding of PR65α and induction of programmed cel...
International Journal of Cancer, 2005
The TIG3 gene is a retinoic acid inducible class II tumor suppressor gene downregulated in severa... more The TIG3 gene is a retinoic acid inducible class II tumor suppressor gene downregulated in several human tumors and malignant cell lines. Diminished TIG3 expression correlates with decreased differentiation whereas forced expression of TIG3 suppresses oncogenic signaling pathways and subsequently induces differentiation or apoptosis in tumor cells. Analysis of TIG3 mRNA expression in a large set of cDNA pools derived from matched tumor and normal human tissues showed a significant downregulation of TIG3 in 29% of the cDNA samples obtained from ovarian carcinomas. Using in situ hybridization, we demonstrated expression of TIG3 in the epithelial lining of 7 normal ovaries but loss of TIG3 expression in 15/19 of human ovarian carcinoma tissues. In SKOV-3, CAOV-3 and ES-2 ovarian carcinoma cell lines, downregulation of TIG3 mRNA was reversible and dependent on an activated MEK-ERK signaling pathway. Re-expression of TIG3 mRNA in these cells upon specific interference with the MEK-pathway was correlated with growth inhibition of the cells. In OVCAR-3 and A27/80 ovarian carcinoma cells, TIG3 suppression is MEK-ERK independent, but expression could be reconstituted upon interferon gamma (IFNgamma) induction. Overexpression of TIG3 in A27/80 ovarian carcinoma cells significantly impaired cell growth and despite increased mRNA levels, TIG3 protein was hardly detectable. These results suggest that TIG3 is negatively regulated by an activated MEK-ERK signaling pathway. Further mechanisms must interfere with TIG3 expression that are independent of MEK and partially include interferon-responsive components.
International Journal of Cancer, 2007
The glycosylphosphatidylinositol-anchored molecule C4.4A, which shares structural features with u... more The glycosylphosphatidylinositol-anchored molecule C4.4A, which shares structural features with uPAR, is frequently expressed on carcinomas with upregulated expression during tumor progression. Moreover, rare expression on nontransformed epithelial cells is strongly increased during tissue remodeling, e.g., during wound healing. This strictly regulated expression prompted us to define transcriptional activation of the C4.4A gene. C4.4A transcription was analyzed in 2 syngenic rat tumor cell lines with low or high metastatic potential, respectively. Though genomic C4.4A DNA was present in both lines, C4.4A mRNA and transcription of a reporter construct containing the C4.4A promoter was only observed in the metastasizing subline. Deletions and point mutations in the C4.4A promoter-driven reporter construct revealed that activation of the TATA-less, GC-rich core promoter (-1 to -50 bp) does not suffice to initiate transcription that requires coactivation of a proximal response element (-71 to -88 bp) and can be further increased by more distal response elements (-89 to -133 bp). Mobility-shift and cotransfection studies showed that Sp3 binding enhances C4.4A transcription, whereas potential Sp1 binding sites were ineffective. C4.4A transcription essentially requires C/EBPbeta binding to a TRE/CCAAT composite element (-71 to -88 bp) as measured by ChIP assay. C4.4A transcription is strikingly enhanced by cotransfection with JunD or c-Jun, such that C4.4A is most strongly transcribed even in the C4.4A-negative tumor cell line after cotransfection with C/EBPbeta plus JunD or c-Jun. Thus, upregulation of C/EBPbeta during tumor progression and wound repair may well provide a sufficient trigger for transcription of the C4.4A gene.
Gene Expression Patterns, 2013
Tetraspanins comprise a large family of integral membrane proteins involved in the regulation of ... more Tetraspanins comprise a large family of integral membrane proteins involved in the regulation of cell adhesion, migration and fusion. In humans it consists of 33 members divided in four subfamilies. Here, we examined the spatial and temporal gene expression of four related tetraspanins during the embryonic development of Xenopus laevis by quantitative real-time PCR and in situ hybridization: Tspan3 (encoded by the gene Tm4sf8 gene) Tspan4 (encoded by the gene Tm4sf7), Tspan5 (encoded by the gene Tm4sf9) and Tspan7 (encoded by the gene Tm4sf2). These genes appeared first in the vertebrates during the evolution and are conserved across different species. In humans, they were associated with several diseases such as sclerosis, mental retardation and cancer; however their physiological role remained unclear. This work provides a comprehensive comparative analysis of the expression of these tetraspanins during the development of X. laevis. The more closely related tetraspanins Tspan3, Tspan4 and Tspan7 exhibited very similar spatial expression patterns, albeit differing in their temporal occurrence. The corresponding transcripts were found in the dorsal animal ectoderm at blastula stage. At early tailbud stages (stage 26) the genes were expressed in the migrating cranial neural crest located in the somites, developing eye, brain, and in otic vesicles. In contrast, Tspan5 appeared first at later stages of development and was detected prominently in the notochord. These data support close relatedness of Tspan3, Tspan4 and Tspan7. The expression of these tetraspanins in the cells with a high migratory potential, e.g. neural crest cells, suggests their role in the regulation of migration processes, characteristic for tetraspanin family members, during development. Similarity of the expression profiles might indicate at least partial functional redundancy, which is in concordance with earlier findings of tissue-limited or absent phenotypes in the knockdown studies of tetraspanins family members performed.
Diagnostic Microbiology and Infectious Disease, 2011
Thermophilic helicase dependent amplification (tHDA), which employs helicase to unwind double-str... more Thermophilic helicase dependent amplification (tHDA), which employs helicase to unwind double-stranded DNA at constant temperature, is a relatively new isothermal nucleic acid amplification technology. In this study, the development and optimization of a 4-plex tHDA assay for detection of Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are described. tHDA is combined with sequencespecific sample preparation on magnetic beads and homogeneous endpoint fluorescence detection using dual-labeled probes. This 4-plex tHDA assay was applied to the detection of 2 genes on CT and a multicopy gene on NG in the presence of an internal control. The assay showed high analytical sensitivity and specificity of simultaneous CT/NG detection and is compatible with a wide variety of sample types and media. The isothermal reaction conditions and homogeneous endpoint detection utilized in this assay are well suited for laboratory automation and high-throughput screening applications as well as for point-of-care testing.
The International Journal …, 2011
Exosomes are most important intercellular communicators and tetraspanins/tetraspanin-complexes ha... more Exosomes are most important intercellular communicators and tetraspanins/tetraspanin-complexes have been suggested to play an important role in exosomal target cell selection. We have shown that only exosomes expressing a Tspan8CD49d complex preferentially ...
Oncogene, 2002
Résumé/Abstract H-rev107-1 is a growth inhibitory RAS target gene capable of suppressing anchorag... more Résumé/Abstract H-rev107-1 is a growth inhibitory RAS target gene capable of suppressing anchorage independent growth in vitro and in vivo. Using a tumour tissue array with 241 matched tumour and normal tissue cDNA pools, we found down-regulation of H-REV107-...
Cell Communication and Signaling, 2011
Background The incidence of cancer in patients with neurological diseases, who have been treated ... more Background The incidence of cancer in patients with neurological diseases, who have been treated with LiCl, is below average. LiCl is a well-established inhibitor of Glycogen synthase kinase-3, a kinase that controls several cellular processes, among which is the degradation of the tumour suppressor protein p53. We therefore wondered whether LiCl induces p53-dependent cell death in cancer cell lines and experimental tumours. Results Here we show that LiCl induces apoptosis of tumour cells both in vitro and in vivo. Cell death was accompanied by cleavage of PARP and Caspases-3, -8 and -10. LiCl-induced cell death was not dependent on p53, but was augmented by its presence. Treatment of tumour cells with LiCl strongly increased TNF-α and FasL expression. Inhibition of TNF-α induction using siRNA or inhibition of FasL binding to its receptor by the Nok-1 antibody potently reduced LiCl-dependent cleavage of Caspase-3 and increased cell survival. Treatment of xenografted rats with LiCl s...