Nikken Prima Puspita - Academia.edu (original) (raw)
Papers by Nikken Prima Puspita
Journal of the Indonesian Mathematical Society, Jul 31, 2022
Let R be a commutative ring with multiplicative identity and C be a coassociative and counital R-... more Let R be a commutative ring with multiplicative identity and C be a coassociative and counital R-coalgebra with the α-condition. A clean comodules defined based on the cleanness on rings and modules. A C-comodule M is a clean comodule if the endomorphism ring of C-comodule M is clean. A clean R-coalgebra C is a clean comodule over itself i.e., if the endomorphism ring of C as a C-comodule is clean. For an idempotent e ∈ R, there are relations between the cleanness of eRe and R. It's motivated us to investigate this condition for coalgebra. For any C, we can construct the R-coalgebra e C e where e is an idempotent element of dual algebra of C. Here, we show that the clean conditions of C implies the clean property of e C e and vice versa.
SENATIK 2016, Oct 6, 2016
Pattimura Proceeding: Conference of Science and Technology, Apr 19, 2022
AIMS Mathematics
Let $ R $ be a commutative ring with multiplicative identity, $ C $ a coassociative and counital ... more Let $ R $ be a commutative ring with multiplicative identity, $ C $ a coassociative and counital $ R −coalgebra,-coalgebra, −coalgebra, B $ an $ R −bialgebra.Acleancomoduleisageneralizationanddualizationofacleanmodule.An-bialgebra. A clean comodule is a generalization and dualization of a clean module. An −bialgebra.Acleancomoduleisageneralizationanddualizationofacleanmodule.An R −module-module −module M $ is called a clean module if the endomorphism ring of $ M $ over $ R $ (denoted by $ End_{R}(M) )isclean.Thus,anyelementof) is clean. Thus, any element of )isclean.Thus,anyelementof End_{R}(M) $ can be expressed as a sum of a unit and an idempotent element of $ End_{R}(M) .Moreover,foraright. Moreover, for a right .Moreover,foraright C −comodule-comodule −comodule M ,theendomorphismsetof, the endomorphism set of ,theendomorphismsetof C −comodule-comodule −comodule M $ denoted by $ End^{C}(M) $ is a subring of $ End_{R}(M) .A. A .A C −comodule-comodule −comodule M $ is a clean comodule if the $ End^{C}(M) $ is a clean ring. A Hopf module $ M $ over $ B $ is a $ B −moduleanda-module and a −moduleanda B $-comodule that satisfies the compatible conditions. This paper considers the notions of a clean ring, clean module, clean coalgebra, and clean comodule in relation to the Hopf Module. We divide our discussion into two parts, i.e., clean and bi-clean...
Let R be a commutative ring with unity and C be an R -coalgebra. The ring R is clean if every r ∈... more Let R be a commutative ring with unity and C be an R -coalgebra. The ring R is clean if every r ∈ R is the sum of a unit and an idempotent element of R . An R -module M is clean if the endomorphism ring of M over R is clean. Moreover, every continuous module is clean. We modify this idea to the comodule and coalgebra cases. A C -comodule M is called a clean comodule if the C -comodule endomorphisms of M are clean. We introduced continuous comodules and proved that every continuous comodules is a clean comodule.
Pattimura Proceeding: Conference of Science and Technology, Apr 19, 2022
Al-Jabar : Jurnal Pendidikan Matematika
Let R commutative ring with multiplicative identity, and M is an R-module. An ideal I of R is irr... more Let R commutative ring with multiplicative identity, and M is an R-module. An ideal I of R is irreducible if the intersection of every two ideals of R equals I, then one of them is I itself. Module theory is also known as an irreducible submodule, from the concept of an irreducible ideal in the ring. The set of R - module homomorphisms from M to itself is denoted by EndR(M). It is called a module endomorphism M of ring R. The set EndR(M) is also a ring with an addition operation and composition function. This paper showed the sufficient condition of an irreducible ideal on the ring of EndR(R) and EndR(M)
Mathematika, 2016
Neutrosophic module over the ring with unity is an algebraic structure formed by a neutrosophic a... more Neutrosophic module over the ring with unity is an algebraic structure formed by a neutrosophic abelian group by providing actions scalar multiplication on the structure. The elementary properties of neutrosophic module have been looked at, that are intersection dan summand among neutrosophic submodules are neutrosophic submodule again, but it not true for union of neutrosophic submodules. In this article discussed the advanced properties of the neutrosophic module and the algebraic aspects respect to this structure, including neutrosophic quotient module and neutrosophic homomorphism module and can be shown that most of the properties of the classical module still true to the neutrosophic structure, especially with regard to the properties of neutrosophic homomorphism module and the fundamental theorem of neutrosophic homomorphism module.
Mathematika, 2016
Given any ring with unity and a commutative neutrosophic group under the additional operation, th... more Given any ring with unity and a commutative neutrosophic group under the additional operation, then from the both structures can be constructed a neutroshopic module by define the scalar multiplication between elements of the ring and elements of the commutative group. Further by generalized the neutrosophic module can be obtained a substructure of the neutrosophic module called a neutrosophic submodule. In this paper, from the concept of neutrosophic module and the ring with unity we study a generalization of classical module, that is a neutrosophic module and its properties. By utilizing the neutroshopic element as an indeterminate and an idempotent element under multiplication can be shown that most of the basic properties of clasiccal module generally still true on this neutrosophic struture.
Mathematika, 2016
In the paper, we explore Dempster-Shaver’s theory and fuzzy preference relations for a decision m... more In the paper, we explore Dempster-Shaver’s theory and fuzzy preference relations for a decision making. Firstly, we discuss some necessary anf suficient conditions for constructing additive consistency fuzzy preference relation. With respect to the Deng et. al.’s work, we combined these to construct a method for decision making. Finally, two examples are presented as illustrations of the effectiveness of the proposed method.
Mathematika, 2017
Penelitian ini membahas sifat-sifat dasar dari persegi ajaib dan struktur aljabar dari himpunan s... more Penelitian ini membahas sifat-sifat dasar dari persegi ajaib dan struktur aljabar dari himpunan semua matriks penyajian dari persegi ajaib berordo . Struktur aljabar yang dapat dibentuk dari himpunan matriks persegi ini antara lain berupa grup komutatif terhadap operasi penjumlahan matriks, modul atas daerah bilangan bulat , dan juga merupakan ruang vektor (atas lapangan rasional ℚ, lapangan real ℝ maupun lapangan kompleks ℂ). Diberikan pula nilai karakteristik dari matriks persegi ajaib salah satunya adalah konstanta ajaib dari matriks persegi ajaib yang bersangkutan.
Mathematika, 2017
Economic Order Quantity model with partial backorder system and incremental discount is an integr... more Economic Order Quantity model with partial backorder system and incremental discount is an integration of several model of inventory optimation, they were Economic Order Quantity optimation model, Economic Order Quantity optimation model with partial backorder system and Economic Order Quantity optimation model with incremental discount. Beside the discounts are given by supplier, in this model there were two stockout conditions, where the consumers disposed to wait until the order came and consumers did not disposed to wait until the order came.
Journal of Physics: Conference Series, 2021
Let R be a commutative ring with identity and M be a comodule over R-coalgebra C. It was already ... more Let R be a commutative ring with identity and M be a comodule over R-coalgebra C. It was already well-known that any C-comodule M is a module over dual algebra C* where C* is the set of all R-module homomorphisms from C to R. Furthermore, the category of comodule is a subcategory of the category of C*-module. Hence, any C-subcomodule of M is a C*-submodule of M, and the conversely is not true. For any non zero element m in M, C*m is a C*-submodule of M. In general, C*m is not to become a C-subcomodule of M. By using the theory of exact sequences in modules and the theory of categories, we give a condition such that C*m to be a C-subcomodule of M.
BAREKENG: Jurnal Ilmu Matematika dan Terapan
A seminear-ring is a generalization of ring. In ring theory, if is a ring with the multiplicativ... more A seminear-ring is a generalization of ring. In ring theory, if is a ring with the multiplicative identity, then the endomorphism module is isomorphic to . Let be a seminear-ring. Here, we can construct the set of endomorphism from to itself denoted by . We show that if is a seminear-ring, then is also a seminear-ring over addition and composition function. We will apply the congruence relation to get the quotient seminear-ring endomorphism. Furthermore, we show the relation between c-ideal and congruence relations. So, we can construct the quotient seminear-ring endomorphism with a c-ideal.
Mathematika, 2016
The aims of Economic Production Quantity models are for manage the production schedule and produc... more The aims of Economic Production Quantity models are for manage the production schedule and product inventory. The first Economic Production Quantity model developed by E.W Taft on 1918. Taft make some asumption such as daily demand rate constant, daily production rate constant, not stockout allowed, single item product and daily production rate are more than daily demand rate. On the process of delivery product, there is not transportation cost. Pasandideh dan Niaki on 2010 was constructed an Economic Production Quantity models with discrete delivery order. In this research we discussed the Economic Production Quantity model which products delivered by multiple palet system and with transportation cost.
In this Paper introduced a coring from tensor product of bialgebra. An algebra with compatible co... more In this Paper introduced a coring from tensor product of bialgebra. An algebra with compatible coalgebra structure are known as bialgebra. For any bialgebra B we can obtained tensor product between B and itself. Defined a right and left B-action on the tensor product of bialgebra B such that we have tensor product of B and itself is a bimodule over.B In this note we expect that the tensor product B and itself becomes a B-coring with comultiplication and counit.
Diberikan matriks berukuran dengan determinan 1 atau -1. Setiap karakter pada plainteks dikonvers... more Diberikan matriks berukuran dengan determinan 1 atau -1. Setiap karakter pada plainteks dikonversikan kedalam angka berdasarkan kode ASCII. Proses enkripsi dilakukan dengan cara mengalikan matriks plainteks dengan matriks Hasil elemen matriks perkaliannya harus merupakan bilangan bulat modulo 95. Sedangkan proses dekripsi hill cipher dilakukan dengan cara yang sama tetapi matriks cipherteks dioperasikan dengan matriks Kata Kunci : cipherteks, dekripsi, enkripsi, plainteks.
Pembahasan tentang teori modul oleh [5] dibagi menjadi modul unital dan modul non unital. Grup Ab... more Pembahasan tentang teori modul oleh [5] dibagi menjadi modul unital dan modul non unital. Grup Abel yang memenuhi aksioma untuk menjadi -modul kecuali aksioma unital disebut -modul non unital. Pada kenyataanya ring dengan elemen satuan tidak selalu menjamin bahwa aksioma unital modul tersebut dipenuhi. Dalam paper ini dijelaskan tentang hasil kali tensor dari modul non unital atas ring dengan elemen satuan. Beberapa sifat khusus seperti isomorfisma pada hasil kali tensor pada modul unital tidak dapat dipertahankan oleh modul non unital.
Journal of Physics: Conference Series, Sep 1, 2018
Jurnal MIPA, 2017
__________________________________________________________________________________________ Setiap... more __________________________________________________________________________________________ Setiap objek pada kategori dengan objek terminal dan produk disebut grup objek jika memiliki beberapa aksioma seperti aksioma grup tetapi didefinisikan oleh diagram komutatif. Aksiomaaksioma tersebut seperti asosiatif, eksistensi elemen identitas dan elemen invers. Untuk setiap objek kelompok G, himpunan endomorfisme dari G ke G dilambangkan dengan Hom (G, G). Hom (G, G) berada tepat di dekat ring pada opersai penjumlahan Å dan operasi perkalian °. Dalam penelitian ini kami menunjukkan bahwa Hom (G, G) dapat dipertimbangkan sebagai cincin B1 di dekat kedua operasi tersebut.
Journal of the Indonesian Mathematical Society, Jul 31, 2022
Let R be a commutative ring with multiplicative identity and C be a coassociative and counital R-... more Let R be a commutative ring with multiplicative identity and C be a coassociative and counital R-coalgebra with the α-condition. A clean comodules defined based on the cleanness on rings and modules. A C-comodule M is a clean comodule if the endomorphism ring of C-comodule M is clean. A clean R-coalgebra C is a clean comodule over itself i.e., if the endomorphism ring of C as a C-comodule is clean. For an idempotent e ∈ R, there are relations between the cleanness of eRe and R. It's motivated us to investigate this condition for coalgebra. For any C, we can construct the R-coalgebra e C e where e is an idempotent element of dual algebra of C. Here, we show that the clean conditions of C implies the clean property of e C e and vice versa.
SENATIK 2016, Oct 6, 2016
Pattimura Proceeding: Conference of Science and Technology, Apr 19, 2022
AIMS Mathematics
Let $ R $ be a commutative ring with multiplicative identity, $ C $ a coassociative and counital ... more Let $ R $ be a commutative ring with multiplicative identity, $ C $ a coassociative and counital $ R −coalgebra,-coalgebra, −coalgebra, B $ an $ R −bialgebra.Acleancomoduleisageneralizationanddualizationofacleanmodule.An-bialgebra. A clean comodule is a generalization and dualization of a clean module. An −bialgebra.Acleancomoduleisageneralizationanddualizationofacleanmodule.An R −module-module −module M $ is called a clean module if the endomorphism ring of $ M $ over $ R $ (denoted by $ End_{R}(M) )isclean.Thus,anyelementof) is clean. Thus, any element of )isclean.Thus,anyelementof End_{R}(M) $ can be expressed as a sum of a unit and an idempotent element of $ End_{R}(M) .Moreover,foraright. Moreover, for a right .Moreover,foraright C −comodule-comodule −comodule M ,theendomorphismsetof, the endomorphism set of ,theendomorphismsetof C −comodule-comodule −comodule M $ denoted by $ End^{C}(M) $ is a subring of $ End_{R}(M) .A. A .A C −comodule-comodule −comodule M $ is a clean comodule if the $ End^{C}(M) $ is a clean ring. A Hopf module $ M $ over $ B $ is a $ B −moduleanda-module and a −moduleanda B $-comodule that satisfies the compatible conditions. This paper considers the notions of a clean ring, clean module, clean coalgebra, and clean comodule in relation to the Hopf Module. We divide our discussion into two parts, i.e., clean and bi-clean...
Let R be a commutative ring with unity and C be an R -coalgebra. The ring R is clean if every r ∈... more Let R be a commutative ring with unity and C be an R -coalgebra. The ring R is clean if every r ∈ R is the sum of a unit and an idempotent element of R . An R -module M is clean if the endomorphism ring of M over R is clean. Moreover, every continuous module is clean. We modify this idea to the comodule and coalgebra cases. A C -comodule M is called a clean comodule if the C -comodule endomorphisms of M are clean. We introduced continuous comodules and proved that every continuous comodules is a clean comodule.
Pattimura Proceeding: Conference of Science and Technology, Apr 19, 2022
Al-Jabar : Jurnal Pendidikan Matematika
Let R commutative ring with multiplicative identity, and M is an R-module. An ideal I of R is irr... more Let R commutative ring with multiplicative identity, and M is an R-module. An ideal I of R is irreducible if the intersection of every two ideals of R equals I, then one of them is I itself. Module theory is also known as an irreducible submodule, from the concept of an irreducible ideal in the ring. The set of R - module homomorphisms from M to itself is denoted by EndR(M). It is called a module endomorphism M of ring R. The set EndR(M) is also a ring with an addition operation and composition function. This paper showed the sufficient condition of an irreducible ideal on the ring of EndR(R) and EndR(M)
Mathematika, 2016
Neutrosophic module over the ring with unity is an algebraic structure formed by a neutrosophic a... more Neutrosophic module over the ring with unity is an algebraic structure formed by a neutrosophic abelian group by providing actions scalar multiplication on the structure. The elementary properties of neutrosophic module have been looked at, that are intersection dan summand among neutrosophic submodules are neutrosophic submodule again, but it not true for union of neutrosophic submodules. In this article discussed the advanced properties of the neutrosophic module and the algebraic aspects respect to this structure, including neutrosophic quotient module and neutrosophic homomorphism module and can be shown that most of the properties of the classical module still true to the neutrosophic structure, especially with regard to the properties of neutrosophic homomorphism module and the fundamental theorem of neutrosophic homomorphism module.
Mathematika, 2016
Given any ring with unity and a commutative neutrosophic group under the additional operation, th... more Given any ring with unity and a commutative neutrosophic group under the additional operation, then from the both structures can be constructed a neutroshopic module by define the scalar multiplication between elements of the ring and elements of the commutative group. Further by generalized the neutrosophic module can be obtained a substructure of the neutrosophic module called a neutrosophic submodule. In this paper, from the concept of neutrosophic module and the ring with unity we study a generalization of classical module, that is a neutrosophic module and its properties. By utilizing the neutroshopic element as an indeterminate and an idempotent element under multiplication can be shown that most of the basic properties of clasiccal module generally still true on this neutrosophic struture.
Mathematika, 2016
In the paper, we explore Dempster-Shaver’s theory and fuzzy preference relations for a decision m... more In the paper, we explore Dempster-Shaver’s theory and fuzzy preference relations for a decision making. Firstly, we discuss some necessary anf suficient conditions for constructing additive consistency fuzzy preference relation. With respect to the Deng et. al.’s work, we combined these to construct a method for decision making. Finally, two examples are presented as illustrations of the effectiveness of the proposed method.
Mathematika, 2017
Penelitian ini membahas sifat-sifat dasar dari persegi ajaib dan struktur aljabar dari himpunan s... more Penelitian ini membahas sifat-sifat dasar dari persegi ajaib dan struktur aljabar dari himpunan semua matriks penyajian dari persegi ajaib berordo . Struktur aljabar yang dapat dibentuk dari himpunan matriks persegi ini antara lain berupa grup komutatif terhadap operasi penjumlahan matriks, modul atas daerah bilangan bulat , dan juga merupakan ruang vektor (atas lapangan rasional ℚ, lapangan real ℝ maupun lapangan kompleks ℂ). Diberikan pula nilai karakteristik dari matriks persegi ajaib salah satunya adalah konstanta ajaib dari matriks persegi ajaib yang bersangkutan.
Mathematika, 2017
Economic Order Quantity model with partial backorder system and incremental discount is an integr... more Economic Order Quantity model with partial backorder system and incremental discount is an integration of several model of inventory optimation, they were Economic Order Quantity optimation model, Economic Order Quantity optimation model with partial backorder system and Economic Order Quantity optimation model with incremental discount. Beside the discounts are given by supplier, in this model there were two stockout conditions, where the consumers disposed to wait until the order came and consumers did not disposed to wait until the order came.
Journal of Physics: Conference Series, 2021
Let R be a commutative ring with identity and M be a comodule over R-coalgebra C. It was already ... more Let R be a commutative ring with identity and M be a comodule over R-coalgebra C. It was already well-known that any C-comodule M is a module over dual algebra C* where C* is the set of all R-module homomorphisms from C to R. Furthermore, the category of comodule is a subcategory of the category of C*-module. Hence, any C-subcomodule of M is a C*-submodule of M, and the conversely is not true. For any non zero element m in M, C*m is a C*-submodule of M. In general, C*m is not to become a C-subcomodule of M. By using the theory of exact sequences in modules and the theory of categories, we give a condition such that C*m to be a C-subcomodule of M.
BAREKENG: Jurnal Ilmu Matematika dan Terapan
A seminear-ring is a generalization of ring. In ring theory, if is a ring with the multiplicativ... more A seminear-ring is a generalization of ring. In ring theory, if is a ring with the multiplicative identity, then the endomorphism module is isomorphic to . Let be a seminear-ring. Here, we can construct the set of endomorphism from to itself denoted by . We show that if is a seminear-ring, then is also a seminear-ring over addition and composition function. We will apply the congruence relation to get the quotient seminear-ring endomorphism. Furthermore, we show the relation between c-ideal and congruence relations. So, we can construct the quotient seminear-ring endomorphism with a c-ideal.
Mathematika, 2016
The aims of Economic Production Quantity models are for manage the production schedule and produc... more The aims of Economic Production Quantity models are for manage the production schedule and product inventory. The first Economic Production Quantity model developed by E.W Taft on 1918. Taft make some asumption such as daily demand rate constant, daily production rate constant, not stockout allowed, single item product and daily production rate are more than daily demand rate. On the process of delivery product, there is not transportation cost. Pasandideh dan Niaki on 2010 was constructed an Economic Production Quantity models with discrete delivery order. In this research we discussed the Economic Production Quantity model which products delivered by multiple palet system and with transportation cost.
In this Paper introduced a coring from tensor product of bialgebra. An algebra with compatible co... more In this Paper introduced a coring from tensor product of bialgebra. An algebra with compatible coalgebra structure are known as bialgebra. For any bialgebra B we can obtained tensor product between B and itself. Defined a right and left B-action on the tensor product of bialgebra B such that we have tensor product of B and itself is a bimodule over.B In this note we expect that the tensor product B and itself becomes a B-coring with comultiplication and counit.
Diberikan matriks berukuran dengan determinan 1 atau -1. Setiap karakter pada plainteks dikonvers... more Diberikan matriks berukuran dengan determinan 1 atau -1. Setiap karakter pada plainteks dikonversikan kedalam angka berdasarkan kode ASCII. Proses enkripsi dilakukan dengan cara mengalikan matriks plainteks dengan matriks Hasil elemen matriks perkaliannya harus merupakan bilangan bulat modulo 95. Sedangkan proses dekripsi hill cipher dilakukan dengan cara yang sama tetapi matriks cipherteks dioperasikan dengan matriks Kata Kunci : cipherteks, dekripsi, enkripsi, plainteks.
Pembahasan tentang teori modul oleh [5] dibagi menjadi modul unital dan modul non unital. Grup Ab... more Pembahasan tentang teori modul oleh [5] dibagi menjadi modul unital dan modul non unital. Grup Abel yang memenuhi aksioma untuk menjadi -modul kecuali aksioma unital disebut -modul non unital. Pada kenyataanya ring dengan elemen satuan tidak selalu menjamin bahwa aksioma unital modul tersebut dipenuhi. Dalam paper ini dijelaskan tentang hasil kali tensor dari modul non unital atas ring dengan elemen satuan. Beberapa sifat khusus seperti isomorfisma pada hasil kali tensor pada modul unital tidak dapat dipertahankan oleh modul non unital.
Journal of Physics: Conference Series, Sep 1, 2018
Jurnal MIPA, 2017
__________________________________________________________________________________________ Setiap... more __________________________________________________________________________________________ Setiap objek pada kategori dengan objek terminal dan produk disebut grup objek jika memiliki beberapa aksioma seperti aksioma grup tetapi didefinisikan oleh diagram komutatif. Aksiomaaksioma tersebut seperti asosiatif, eksistensi elemen identitas dan elemen invers. Untuk setiap objek kelompok G, himpunan endomorfisme dari G ke G dilambangkan dengan Hom (G, G). Hom (G, G) berada tepat di dekat ring pada opersai penjumlahan Å dan operasi perkalian °. Dalam penelitian ini kami menunjukkan bahwa Hom (G, G) dapat dipertimbangkan sebagai cincin B1 di dekat kedua operasi tersebut.