Nikolaus Sucher - Academia.edu (original) (raw)

Related Authors

Ammar Bader

Umm Al-Qura University, Makkah, Saudi Arabia

Chithan Kandeepan

Javier Echeverría

Md. Sanower Hossain

Zannat Urbi

Gabriella Mendes

Uploads

Papers by Nikolaus Sucher

Research paper thumbnail of An in vitro study of anti-inflammatory activity of standardised Andrographis paniculata extracts and pure andrographolide

Background: The anti-inflammatory activity of Andrographis paniculata (Acanthaceae), a traditiona... more Background: The anti-inflammatory activity of Andrographis paniculata (Acanthaceae), a traditional medicine widely used in Asia, is commonly attributed to andrographolide, its main secondary metabolite. Commercial A. paniculata extracts are standardised to andrographolide content. We undertook the present study to investigate 1) how selective enrichment of andrographolide in commercial A. paniculata extracts affects the variability of non-standardised phytochemical components and 2) if variability in the non-standardised components of the extract affects the pharmacological activity of andrographolide itself. Methods: We characterized 12 commercial, standardised (≥30% andrographolide) batches of A. paniculata extracts from India by HPLC profiling. We determined the antioxidant capacity of the extracts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, oxygen radical antioxidant capacity (ORAC) and a Folin-Ciocalteu (FC) antioxidant assays. Their anti-inflammatory activity was assessed by assaying their inhibitory effect on the release of tumor necrosis factor alpha (TNF-α) in the human monocytic cell line THP-1. Results: The andrographolide content in the samples was close to the claimed value (32.2 ± 2.1%, range 27.5 to 35.9%). Twenty-one non-standardised constituents exhibited more than 2-fold variation in HPLC peak intensities in the tested batches. The chlorogenic acid content of the batches varied more than 30-fold. The DPPH free radical scavenging activity varied~3-fold, the ORAC and FC antioxidant capacity varied~1.5 fold among batches. In contrast, the TNF-α inhibitory activity of the extracts exhibited little variation and comparison with pure andrographolide indicated that it was mostly due to their andrographolide content. Conclusions: Standardised A. paniculata extracts contained the claimed amount of andrographolide but exhibited considerable phytochemical background variation. DPPH radical scavenging activity of the extracts was mostly due to the flavonoid/phenlycarboxylic acid compounds in the extracts. The inhibitory effect of andrographolide on the release of TNF-α was little affected by the quantitative variation of the non-standardised constituents.

Research paper thumbnail of An in vitro study of anti-inflammatory activity of standardised Andrographis paniculata extracts and pure andrographolide

Background: The anti-inflammatory activity of Andrographis paniculata (Acanthaceae), a traditiona... more Background: The anti-inflammatory activity of Andrographis paniculata (Acanthaceae), a traditional medicine widely used in Asia, is commonly attributed to andrographolide, its main secondary metabolite. Commercial A. paniculata extracts are standardised to andrographolide content. We undertook the present study to investigate 1) how selective enrichment of andrographolide in commercial A. paniculata extracts affects the variability of non-standardised phytochemical components and 2) if variability in the non-standardised components of the extract affects the pharmacological activity of andrographolide itself. Methods: We characterized 12 commercial, standardised (≥30% andrographolide) batches of A. paniculata extracts from India by HPLC profiling. We determined the antioxidant capacity of the extracts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, oxygen radical antioxidant capacity (ORAC) and a Folin-Ciocalteu (FC) antioxidant assays. Their anti-inflammatory activity was assessed by assaying their inhibitory effect on the release of tumor necrosis factor alpha (TNF-α) in the human monocytic cell line THP-1. Results: The andrographolide content in the samples was close to the claimed value (32.2 ± 2.1%, range 27.5 to 35.9%). Twenty-one non-standardised constituents exhibited more than 2-fold variation in HPLC peak intensities in the tested batches. The chlorogenic acid content of the batches varied more than 30-fold. The DPPH free radical scavenging activity varied~3-fold, the ORAC and FC antioxidant capacity varied~1.5 fold among batches. In contrast, the TNF-α inhibitory activity of the extracts exhibited little variation and comparison with pure andrographolide indicated that it was mostly due to their andrographolide content. Conclusions: Standardised A. paniculata extracts contained the claimed amount of andrographolide but exhibited considerable phytochemical background variation. DPPH radical scavenging activity of the extracts was mostly due to the flavonoid/phenlycarboxylic acid compounds in the extracts. The inhibitory effect of andrographolide on the release of TNF-α was little affected by the quantitative variation of the non-standardised constituents.

Log In