Nimesh Patel - Academia.edu (original) (raw)

Uploads

Papers by Nimesh Patel

Research paper thumbnail of A disk of dust and molecular gas around a high-mass protostar

Nature, 2005

The processes leading to the birth of low-mass stars such as our Sun have been well studied, but ... more The processes leading to the birth of low-mass stars such as our Sun have been well studied, but the formation of high-mass (> 8 x Sun's mass) stars has heretofore remained poorly understood. Recent observational studies suggest that high-mass stars may form in essentially the same way as low-mass stars, namely via an accretion process, instead of via merging of several low-mass (< 8 Msun) stars. However, there is as yet no conclusive evidence. Here, we report the discovery of a flattened disk-like structure observed at submillimeter wavelengths, centered on a massive 15 Msun protostar in the Cepheus-A region. The disk, with a radius of about 330 astronomical units (AU) and a mass of 1 to 8 Msun, is detected in dust continuum as well as in molecular line emission. Its perpendicular orientation to, and spatial coincidence with the central embedded powerful bipolar radio jet, provides the best evidence yet that massive stars form via disk accretion in direct analogy to the formation of low-mass stars.

Research paper thumbnail of A disk of dust and molecular gas around a high-mass protostar

Nature, 2005

The processes leading to the birth of low-mass stars such as our Sun have been well studied, but ... more The processes leading to the birth of low-mass stars such as our Sun have been well studied, but the formation of high-mass (> 8 x Sun's mass) stars has heretofore remained poorly understood. Recent observational studies suggest that high-mass stars may form in essentially the same way as low-mass stars, namely via an accretion process, instead of via merging of several low-mass (< 8 Msun) stars. However, there is as yet no conclusive evidence. Here, we report the discovery of a flattened disk-like structure observed at submillimeter wavelengths, centered on a massive 15 Msun protostar in the Cepheus-A region. The disk, with a radius of about 330 astronomical units (AU) and a mass of 1 to 8 Msun, is detected in dust continuum as well as in molecular line emission. Its perpendicular orientation to, and spatial coincidence with the central embedded powerful bipolar radio jet, provides the best evidence yet that massive stars form via disk accretion in direct analogy to the formation of low-mass stars.

Log In