Nisha Jha - Academia.edu (original) (raw)
Papers by Nisha Jha
International Journal of …, 2011
In this paper a novel temperature controller, for non linear processes, under the influence of ex... more In this paper a novel temperature controller, for non linear processes, under the influence of external disturbance, has been proposed. The control process has been carried out by Neural Network based Proportional, Integral and Derivative (NNPID). In this controller, two experiments have been conducted with respect to the setpoint changes and load disturbance. The first experiment considers the change in setpoint temperature in steps of 10oC from 50oC to 70oC for three different rates of flow of water. In the second experiment the load disturbance in terms of addition of 100ml/min of water at three different time intervals is introduced in the system. It has been shown that, in these situations, the proposed controller adjusts NN weights which are equivalent to PID parameters in both the cases to achieve better control than conventional PID. In the proposed controller, an error less than 0.08oC have been achieved under the effect of the load disturbance. Moreover, it is also seen that the present controller gives error less than 0.11oC, 0.12oC and 0.12oC, without overshoot for 50oC, 60oC and 70oC, respectively, for all three rate of flow of water.
International Journal of …, 2011
In this paper a novel temperature controller, for non linear processes, under the influence of ex... more In this paper a novel temperature controller, for non linear processes, under the influence of external disturbance, has been proposed. The control process has been carried out by Neural Network based Proportional, Integral and Derivative (NNPID). In this controller, two experiments have been conducted with respect to the setpoint changes and load disturbance. The first experiment considers the change in setpoint temperature in steps of 10oC from 50oC to 70oC for three different rates of flow of water. In the second experiment the load disturbance in terms of addition of 100ml/min of water at three different time intervals is introduced in the system. It has been shown that, in these situations, the proposed controller adjusts NN weights which are equivalent to PID parameters in both the cases to achieve better control than conventional PID. In the proposed controller, an error less than 0.08oC have been achieved under the effect of the load disturbance. Moreover, it is also seen that the present controller gives error less than 0.11oC, 0.12oC and 0.12oC, without overshoot for 50oC, 60oC and 70oC, respectively, for all three rate of flow of water.