Nithin Anchuri - Academia.edu (original) (raw)

Uploads

Papers by Nithin Anchuri

Research paper thumbnail of RAIL-KD: RAndom Intermediate Layer Mapping for Knowledge Distillation

Intermediate layer knowledge distillation (KD) can improve the standard KD technique (which only ... more Intermediate layer knowledge distillation (KD) can improve the standard KD technique (which only targets the output of teacher and student models) especially over large pre-trained language models. However, intermediate layer distillation suffers from excessive computational burdens and engineering efforts required for setting up a proper layer mapping. To address these problems, we propose a RAndom Intermediate Layer Knowledge Distillation (RAIL-KD) approach in which, intermediate layers from the teacher model are selected randomly to be distilled into the intermediate layers of the student model. This randomized selection enforce that: all teacher layers are taken into account in the training process, while reducing the computational cost of intermediate layer distillation. Also, we show that it act as a regularizer for improving the generalizability of the student model. We perform extensive experiments on GLUE tasks as well as on out-of-domain test sets. We show that our propose...

Research paper thumbnail of A Short Study on Compressing Decoder-Based Language Models

ArXiv, 2021

Pre-trained Language Models (PLMs) have been successful for a wide range of natural language proc... more Pre-trained Language Models (PLMs) have been successful for a wide range of natural language processing (NLP) tasks. The state-of-the-art of PLMs, however, are extremely large to be used on edge devices. As a result, the topic of model compression has attracted increasing attention in the NLP community. Most of the existing works focus on compressing encoder-based models (tiny-BERT, distilBERT, distilRoBERTa, etc), however, to the best of our knowledge, the compression of decoder-based models (such as GPT-2) has not been investigated much. Our paper aims to fill this gap. Specifically, we explore two directions: 1) we employ current state-of-the-art knowledge distillation techniques to improve fine-tuning of DistilGPT-2. 2) we pre-train a compressed GPT-2 model using layer truncation and compare it against the distillation-based method (DistilGPT2). The training time of our compressed model is significantly less than DistilGPT-2, but it can achieve better performance when fine-tuned...

Research paper thumbnail of RAIL-KD: RAndom Intermediate Layer Mapping for Knowledge Distillation

ArXiv, 2021

Intermediate layer knowledge distillation (KD) can improve the standard KD technique (which only ... more Intermediate layer knowledge distillation (KD) can improve the standard KD technique (which only targets the output of teacher and student models) especially over large pre-trained language models. However, intermediate layer distillation suffers from excessive computational burdens and engineering efforts required for setting up a proper layer mapping. To address these problems, we propose a RAndom Intermediate Layer Knowledge Distillation (RAIL-KD) approach in which, intermediate layers from the teacher model are selected randomly to be distilled into the intermediate layers of the student model. This randomized selection enforce that: all teacher layers are taken into account in the training process, while reducing the computational cost of intermediate layer distillation. Also, we show that it act as a regularizer for improving the generalizability of the student model. We perform extensive experiments on GLUE tasks as well as on out-of-domain test sets. We show that our propose...

Research paper thumbnail of RAIL-KD: RAndom Intermediate Layer Mapping for Knowledge Distillation

Intermediate layer knowledge distillation (KD) can improve the standard KD technique (which only ... more Intermediate layer knowledge distillation (KD) can improve the standard KD technique (which only targets the output of teacher and student models) especially over large pre-trained language models. However, intermediate layer distillation suffers from excessive computational burdens and engineering efforts required for setting up a proper layer mapping. To address these problems, we propose a RAndom Intermediate Layer Knowledge Distillation (RAIL-KD) approach in which, intermediate layers from the teacher model are selected randomly to be distilled into the intermediate layers of the student model. This randomized selection enforce that: all teacher layers are taken into account in the training process, while reducing the computational cost of intermediate layer distillation. Also, we show that it act as a regularizer for improving the generalizability of the student model. We perform extensive experiments on GLUE tasks as well as on out-of-domain test sets. We show that our propose...

Research paper thumbnail of A Short Study on Compressing Decoder-Based Language Models

ArXiv, 2021

Pre-trained Language Models (PLMs) have been successful for a wide range of natural language proc... more Pre-trained Language Models (PLMs) have been successful for a wide range of natural language processing (NLP) tasks. The state-of-the-art of PLMs, however, are extremely large to be used on edge devices. As a result, the topic of model compression has attracted increasing attention in the NLP community. Most of the existing works focus on compressing encoder-based models (tiny-BERT, distilBERT, distilRoBERTa, etc), however, to the best of our knowledge, the compression of decoder-based models (such as GPT-2) has not been investigated much. Our paper aims to fill this gap. Specifically, we explore two directions: 1) we employ current state-of-the-art knowledge distillation techniques to improve fine-tuning of DistilGPT-2. 2) we pre-train a compressed GPT-2 model using layer truncation and compare it against the distillation-based method (DistilGPT2). The training time of our compressed model is significantly less than DistilGPT-2, but it can achieve better performance when fine-tuned...

Research paper thumbnail of RAIL-KD: RAndom Intermediate Layer Mapping for Knowledge Distillation

ArXiv, 2021

Intermediate layer knowledge distillation (KD) can improve the standard KD technique (which only ... more Intermediate layer knowledge distillation (KD) can improve the standard KD technique (which only targets the output of teacher and student models) especially over large pre-trained language models. However, intermediate layer distillation suffers from excessive computational burdens and engineering efforts required for setting up a proper layer mapping. To address these problems, we propose a RAndom Intermediate Layer Knowledge Distillation (RAIL-KD) approach in which, intermediate layers from the teacher model are selected randomly to be distilled into the intermediate layers of the student model. This randomized selection enforce that: all teacher layers are taken into account in the training process, while reducing the computational cost of intermediate layer distillation. Also, we show that it act as a regularizer for improving the generalizability of the student model. We perform extensive experiments on GLUE tasks as well as on out-of-domain test sets. We show that our propose...

Log In