Nor Eltanany - Academia.edu (original) (raw)
Papers by Nor Eltanany
Journal of medicinal chemistry, 2011
Mikrochimica Acta, 2009
A simple and sensitive electrochemical immunosensor for a one-step immunoassay for alpha-fetoprot... more A simple and sensitive electrochemical immunosensor for a one-step immunoassay for alpha-fetoprotein (AFP) was designed using silver nanoparticles and double-stranded DNA as matrices. The detection was based on the change in the electron transfer resistance before and after the antigen-antibody reaction by using electrochemical impedance spectroscopy. Under optimal conditions, the resistance shift of the immunosensor is proportional to the AFP concentration in the range 3.5 –360 ng·mL−1 with a detection limit of 1.5 ng·mL−1 (at 3σ). The immunosensor exhibits high sensitivity, good reproducibility and stability. Results obtained for clinical serum samples by the immunosensor are in accordance with those determined by spectrophotometric enzyme-linked immunosorbent assays.
Journal of Cluster Science, 2011
Nanoparticles are usually 1-100 nm in each spatial dimension considered as building blocks of the... more Nanoparticles are usually 1-100 nm in each spatial dimension considered as building blocks of the next generation of optoelectronics, electronics, and various chemical and biochemical sensors. In the synthesis of nanoparticles use of microorganisms emerges as an eco-friendly and exciting approach that reduce waste products (ultimately leading to atomically precise molecular manufacturing with zero waste); the use of nanomaterials as catalysts for greater efficiency in current manufacturing processes by minimizing or eliminating the use of toxic materials (green chemistry principles); the use of nanomaterials and nanodevices to reduce pollution (e.g. water and air filters); and the use of nanomaterials for more efficient alternative energy production (e.g. solar and fuel cells). Fungi have many advantages for nanoparticle synthesis compared with other organisms. In this study, Geotricum sp. found to successfully produce Ag nanoparticles. Geotricum sp. was grown in SDA (Sabro Dextrose Agar) medium at 25 ± 1°C for 96 h. The mycelia were used to convert silver nitrate solution into nano-silver. Silver nanoparticles were synthesized using these fungi (Geotricum sp.) extracellularly. UV-VIS spectroscopy, Atomic Force Microscopy (AFM) and Scanning Electron Microscopy images shows the nanoparticle formation in the medium. Energy-dispersive X-ray spectroscopy (EDX) also confirmed that silver nanoparticles in the range of 30-50 nm were synthesized extracellularly. FTIR analyses confirmed the presence of amide (I) and (II) bands of protein as capping and stabilizing agent on the surface of nanoparticles.
European Journal of Nuclear Medicine and Molecular Imaging, 2010
Angiogenesis is a keystone in the treatment of cancer and potentially many other diseases. In can... more Angiogenesis is a keystone in the treatment of cancer and potentially many other diseases. In cancer, first-generation antiangiogenic therapeutic approaches have demonstrated survival benefit in subsets of patients, but their high cost and notable adverse side effect risk have fueled alternative development efforts to personalize patient selection and reduce off-target effects. In parallel, rapid advances in cost-effective genomic profiling and sensitive early detection of high-risk biomarkers for cancer, atherosclerosis, and other angiogenesis-related pathologies will challenge the medical imaging community to identify, characterize, and risk stratify patients early in the natural history of these disease processes. Conventional diagnostic imaging techniques were not intended for such sensitive and specific detection, which has led to the emergence of novel noninvasive biomedical imaging approaches. The overall intent of molecular imaging is to achieve greater quantitative characterization of pathologies based on microanatomical, biochemical, or functional assessments; in many approaches, the capacity to deliver effective therapy, e.g., antiangiogenic therapy, can be combined. Agents with both diagnostic and therapy attributes have acquired the moniker “theranostics.” This review will explore biomedical imaging options being pursued to better segment and treat patients with angiogenesis-influenced disease using vascular-constrained contrast platform technologies.
Biomaterials, 2009
Angiogenesis is an important phenomenon involved in normal growth and wound healing processes. An... more Angiogenesis is an important phenomenon involved in normal growth and wound healing processes. An imbalance of the growth factors involved in this process, however, causes the acceleration of several diseases including malignant, ocular, and inflammatory diseases. Inhibiting angiogenesis through interfering in its pathway is a promising methodology to hinder the progression of these diseases. The function and mechanism of silver nanoparticles (Ag-NPs) in angiogenesis have not been elucidated to date. PEDF is suggested to be a potent anti-angiogenic agent. In this study, we postulated that Ag-NPs might have the ability to inhibit angiogenesis, the pivotal step in tumor growth, invasiveness, and metastasis. We have demonstrated that Ag-NPs could also inhibit vascular endothelial growth factor (VEGF) induced cell proliferation, migration, and capillary-like tube formation of bovine retinal endothelial cells like PEDF. In addition, Ag-NPs effectively inhibited the formation of new blood microvessels induced by VEGF in the mouse Matrigel plug assay. To understand the underlying mechanism of Ag-NPs on the inhibitory effect of angiogenesis, we showed that Ag-NPs could inhibit the activation of PI3K/Akt. Together, our results indicate that Ag-NPs can act as an anti-angiogenic molecule by targeting the activation of PI3K/Akt signaling pathways.
Journal of medicinal chemistry, 2011
Mikrochimica Acta, 2009
A simple and sensitive electrochemical immunosensor for a one-step immunoassay for alpha-fetoprot... more A simple and sensitive electrochemical immunosensor for a one-step immunoassay for alpha-fetoprotein (AFP) was designed using silver nanoparticles and double-stranded DNA as matrices. The detection was based on the change in the electron transfer resistance before and after the antigen-antibody reaction by using electrochemical impedance spectroscopy. Under optimal conditions, the resistance shift of the immunosensor is proportional to the AFP concentration in the range 3.5 –360 ng·mL−1 with a detection limit of 1.5 ng·mL−1 (at 3σ). The immunosensor exhibits high sensitivity, good reproducibility and stability. Results obtained for clinical serum samples by the immunosensor are in accordance with those determined by spectrophotometric enzyme-linked immunosorbent assays.
Journal of Cluster Science, 2011
Nanoparticles are usually 1-100 nm in each spatial dimension considered as building blocks of the... more Nanoparticles are usually 1-100 nm in each spatial dimension considered as building blocks of the next generation of optoelectronics, electronics, and various chemical and biochemical sensors. In the synthesis of nanoparticles use of microorganisms emerges as an eco-friendly and exciting approach that reduce waste products (ultimately leading to atomically precise molecular manufacturing with zero waste); the use of nanomaterials as catalysts for greater efficiency in current manufacturing processes by minimizing or eliminating the use of toxic materials (green chemistry principles); the use of nanomaterials and nanodevices to reduce pollution (e.g. water and air filters); and the use of nanomaterials for more efficient alternative energy production (e.g. solar and fuel cells). Fungi have many advantages for nanoparticle synthesis compared with other organisms. In this study, Geotricum sp. found to successfully produce Ag nanoparticles. Geotricum sp. was grown in SDA (Sabro Dextrose Agar) medium at 25 ± 1°C for 96 h. The mycelia were used to convert silver nitrate solution into nano-silver. Silver nanoparticles were synthesized using these fungi (Geotricum sp.) extracellularly. UV-VIS spectroscopy, Atomic Force Microscopy (AFM) and Scanning Electron Microscopy images shows the nanoparticle formation in the medium. Energy-dispersive X-ray spectroscopy (EDX) also confirmed that silver nanoparticles in the range of 30-50 nm were synthesized extracellularly. FTIR analyses confirmed the presence of amide (I) and (II) bands of protein as capping and stabilizing agent on the surface of nanoparticles.
European Journal of Nuclear Medicine and Molecular Imaging, 2010
Angiogenesis is a keystone in the treatment of cancer and potentially many other diseases. In can... more Angiogenesis is a keystone in the treatment of cancer and potentially many other diseases. In cancer, first-generation antiangiogenic therapeutic approaches have demonstrated survival benefit in subsets of patients, but their high cost and notable adverse side effect risk have fueled alternative development efforts to personalize patient selection and reduce off-target effects. In parallel, rapid advances in cost-effective genomic profiling and sensitive early detection of high-risk biomarkers for cancer, atherosclerosis, and other angiogenesis-related pathologies will challenge the medical imaging community to identify, characterize, and risk stratify patients early in the natural history of these disease processes. Conventional diagnostic imaging techniques were not intended for such sensitive and specific detection, which has led to the emergence of novel noninvasive biomedical imaging approaches. The overall intent of molecular imaging is to achieve greater quantitative characterization of pathologies based on microanatomical, biochemical, or functional assessments; in many approaches, the capacity to deliver effective therapy, e.g., antiangiogenic therapy, can be combined. Agents with both diagnostic and therapy attributes have acquired the moniker “theranostics.” This review will explore biomedical imaging options being pursued to better segment and treat patients with angiogenesis-influenced disease using vascular-constrained contrast platform technologies.
Biomaterials, 2009
Angiogenesis is an important phenomenon involved in normal growth and wound healing processes. An... more Angiogenesis is an important phenomenon involved in normal growth and wound healing processes. An imbalance of the growth factors involved in this process, however, causes the acceleration of several diseases including malignant, ocular, and inflammatory diseases. Inhibiting angiogenesis through interfering in its pathway is a promising methodology to hinder the progression of these diseases. The function and mechanism of silver nanoparticles (Ag-NPs) in angiogenesis have not been elucidated to date. PEDF is suggested to be a potent anti-angiogenic agent. In this study, we postulated that Ag-NPs might have the ability to inhibit angiogenesis, the pivotal step in tumor growth, invasiveness, and metastasis. We have demonstrated that Ag-NPs could also inhibit vascular endothelial growth factor (VEGF) induced cell proliferation, migration, and capillary-like tube formation of bovine retinal endothelial cells like PEDF. In addition, Ag-NPs effectively inhibited the formation of new blood microvessels induced by VEGF in the mouse Matrigel plug assay. To understand the underlying mechanism of Ag-NPs on the inhibitory effect of angiogenesis, we showed that Ag-NPs could inhibit the activation of PI3K/Akt. Together, our results indicate that Ag-NPs can act as an anti-angiogenic molecule by targeting the activation of PI3K/Akt signaling pathways.