O. Serralbo - Academia.edu (original) (raw)
Papers by O. Serralbo
Development (Cambridge, England), 2014
In amniotes, it is widely accepted that WNTs secreted by the dorsal neural tube form a concentrat... more In amniotes, it is widely accepted that WNTs secreted by the dorsal neural tube form a concentration gradient that regulates early somite patterning and myotome organization. Here we demonstrate in the chicken embryo that WNT protein is not secreted to act at a distance, but rather loaded onto migrating neural crest cells that deliver it to somites. Inhibiting neural crest migration or ablating their population has a profound impact on the WNT response in somites. Furthermore, we show that a central player in the efficient delivery of WNT to somites is the heparan sulfate proteoglycan GPC4, expressed by neural crest. Together, our data describe a novel mode of signaling whereby WNT proteins hitch a ride on migratory neural crest cells to pattern the somites at a distance from its source.
Methods in molecular biology (Clifton, N.J.), 2012
Planar cell polarity (PCP) is the coordinate organization of cells within the plane of a tissue. ... more Planar cell polarity (PCP) is the coordinate organization of cells within the plane of a tissue. PCP is essential for tissue function, such as for proper hearing in the vertebrate ear or for accurate vision in the Drosophila eye. Using the chick embryo, we have recently shown that during early muscle formation, the first formed muscle fibres utilize the PCP pathway to orient parallel to a WNT11 source present in the medial border of somites. Our results further establish that WNT11 acts as a directional cue to regulate this process. To perform this study, two major techniques have been utilized, the gene loss-of-function using a vector-based shRNAmir expression and confocal videomicroscopy of fluorescent gene reporters targeted in specific cell subpopulations by in vivo electroporation. Here we describe the two techniques.
The Plant cell, 2003
In yeast and animals, the anaphase-promoting complex or cyclosome (APC/C) is an essential ubiquit... more In yeast and animals, the anaphase-promoting complex or cyclosome (APC/C) is an essential ubiquitin protein ligase that regulates mitotic progression and exit by controlling the stability of cell cycle regulatory proteins, such as securin and the mitotic cyclins. In plants, the function, regulation, and substrates of the APC/C are poorly understood. To gain more insight into the roles of the plant APC/C, we characterized at the molecular level one of its subunits, APC2, which is encoded by a single-copy gene in Arabidopsis. We show that the Arabidopsis gene is able to partially complement a budding yeast apc2 ts mutant. By yeast two-hybrid assays, we demonstrate an interaction of APC2 with two other APC/C subunits: APC11 and APC8/CDC23. A reverse-genetic approach identified Arabidopsis plants carrying T-DNA insertions in the APC2 gene. apc2 null mutants are impaired in female megagametogenesis and accumulate a cyclin-beta-glucuronidase reporter protein but do not display metaphase a...
Proceedings of the National Academy of Sciences, 2006
Nature, 2009
The early vertebrate skeletal muscle is a well-organized tissue in which the primitive muscle fib... more The early vertebrate skeletal muscle is a well-organized tissue in which the primitive muscle fibres, the myocytes, are all parallel and aligned along the antero-posterior axis of the embryo. How myofibres acquire their orientation during development is unknown. Here we show that during early chick myogenesis WNT11 has an essential role in the oriented elongation of the myocytes. We find that the neural tube, known to drive WNT11 expression in the medial border of somites 1 , is necessary and sufficient to orient myocyte elongation. We then show that the specific inhibition of WNT11 function in somites leads to the disorganization of myocytes. We establish that WNT11 mediates this effect through the evolutionary conserved planar cell polarity (PCP) pathway, downstream of the WNT/b-catenin-dependent pathway, required to initiate the myogenic program of myocytes and WNT11 expression. Finally, we demonstrate that a localized ectopic source of WNT11 can markedly change the orientation of myocytes, indicating that WNT11 acts as a directional cue in this process. All together, these data show that the sequential action of the WNT/PCP and the WNT/b-catenin pathways is necessary for the formation of fully functional embryonic muscle fibres. This study also provides evidence that WNTs can act as instructive cues to regulate the PCP pathway in vertebrates.
genesis, 2013
The use of shRNAmir to down-regulate the expression of genes of interest is a powerful tool for s... more The use of shRNAmir to down-regulate the expression of genes of interest is a powerful tool for studying gene function during early chick development. However, because of the limitations of electroporation-mediated transgenesis, the down-regulation of genes expressed at late stages of development in specific tissues is difficult to perform. By combining electroporation of a doxycycline-inducible, miR30based shRNA plasmid with the Tol2 genomic integration system, we are now able to down-regulate the expression of any gene of interest at defined stage of chicken development. genesis 00:1-9. V C 2013 Wiley Periodicals, Inc.
Developmental Biology, 2014
Satellite cells are resident stem cells of skeletal muscle, supplying myoblasts for post-natal mu... more Satellite cells are resident stem cells of skeletal muscle, supplying myoblasts for post-natal muscle growth, hypertrophy and repair. Many regulatory networks control satellite cell function, which includes EGF signalling via the ErbB family of receptors. Here we investigated the role of ErbB3 binding protein-1 (Ebp1) in regulation of myogenic stem cell proliferation and differentiation. Ebp1 is a well-conserved DNA/RNA binding protein that is implicated in cell growth, apoptosis and differentiation in many cell types. Of the two main Ebp1 isoforms, only p48 was expressed in satellite cells and C2C12 myoblasts. Although not present in quiescent satellite cells, p48 was strongly induced during activation, remaining at high levels during proliferation and differentiation. While retroviral-mediated over-expression of Ebp1 had only minor effects, siRNA-mediated Ebp1 knockdown inhibited both proliferation and differentiation of satellite cells and C2C12 myoblasts, with a clear failure of myotube formation. Ebp1-knockdown significantly reduced ErbB3 receptor levels, yet over-expression of ErbB3 in Ebp1 knockdown cells did not rescue differentiation. Ebp1 was also expressed by muscle cells during developmental myogenesis in mouse. Since Ebp1 is well-conserved between mouse and chick, we switched to chick to examine its role in muscle formation. In chick embryo, Ebp1 was expressed in the dermomyotome, and myogenic differentiation of muscle progenitors was inhibited by specific Ebp1 down-regulation using shRNA electroporation. These observations demonstrate a conserved function of Ebp1 in the regulation of embryonic muscle progenitors and adult muscle stem cells, which likely operates independently of ErbB3 signaling.
Current Biology, 2006
Cell polarity is commonly coordinated within the plane of a single tissue layer (planar polarity)... more Cell polarity is commonly coordinated within the plane of a single tissue layer (planar polarity), and hair positioning has been exploited as a simple marker for planar polarization of animal epithelia . The root epidermis of the plant Arabidopsis similarly reveals planar polarity of hair localization close to root tiporiented (basal) ends of hair-forming cells . Hair position is directed toward a concentration maximum of the hormone auxin in the root tip , but mechanisms driving this plant-specific planar polarity remain elusive. Here, we report that combinatorial action of the auxin influx carrier AUX1 [6, 7], ETHYLENE-INSENSITIVE2 (EIN2) [8], and GNOM [9] genes mediates the vector for coordinate hair positioning. In aux1;ein2;gnom eb triple mutant roots, hairs display axial (apical or basal) instead of coordinate polar (basal) position, and recruitment of Rho-of-Plant (ROP) GTPases to the hair initiation site reveals the same polar-to-axial switch. The auxin concentration gradient is virtually abolished in aux1;ein2;gnom eb roots, where locally applied auxin can coordinate hair positioning. Moreover, auxin overproduction in sectors of wild-type roots enhances planar ROP and hair polarity over long and short distances. Hence, auxin may provide vectorial information for planar polarity that requires combinatorial AUX1, EIN2, and GNOM activity upstream of ROP positioning.
Nucleic Acids Research, 1997
extended to other biological subjects and organisms so as to study gene regulatory networks in an... more extended to other biological subjects and organisms so as to study gene regulatory networks in an evolutionary perspective.
Development (Cambridge, England), 2014
In amniotes, it is widely accepted that WNTs secreted by the dorsal neural tube form a concentrat... more In amniotes, it is widely accepted that WNTs secreted by the dorsal neural tube form a concentration gradient that regulates early somite patterning and myotome organization. Here we demonstrate in the chicken embryo that WNT protein is not secreted to act at a distance, but rather loaded onto migrating neural crest cells that deliver it to somites. Inhibiting neural crest migration or ablating their population has a profound impact on the WNT response in somites. Furthermore, we show that a central player in the efficient delivery of WNT to somites is the heparan sulfate proteoglycan GPC4, expressed by neural crest. Together, our data describe a novel mode of signaling whereby WNT proteins hitch a ride on migratory neural crest cells to pattern the somites at a distance from its source.
Methods in molecular biology (Clifton, N.J.), 2012
Planar cell polarity (PCP) is the coordinate organization of cells within the plane of a tissue. ... more Planar cell polarity (PCP) is the coordinate organization of cells within the plane of a tissue. PCP is essential for tissue function, such as for proper hearing in the vertebrate ear or for accurate vision in the Drosophila eye. Using the chick embryo, we have recently shown that during early muscle formation, the first formed muscle fibres utilize the PCP pathway to orient parallel to a WNT11 source present in the medial border of somites. Our results further establish that WNT11 acts as a directional cue to regulate this process. To perform this study, two major techniques have been utilized, the gene loss-of-function using a vector-based shRNAmir expression and confocal videomicroscopy of fluorescent gene reporters targeted in specific cell subpopulations by in vivo electroporation. Here we describe the two techniques.
The Plant cell, 2003
In yeast and animals, the anaphase-promoting complex or cyclosome (APC/C) is an essential ubiquit... more In yeast and animals, the anaphase-promoting complex or cyclosome (APC/C) is an essential ubiquitin protein ligase that regulates mitotic progression and exit by controlling the stability of cell cycle regulatory proteins, such as securin and the mitotic cyclins. In plants, the function, regulation, and substrates of the APC/C are poorly understood. To gain more insight into the roles of the plant APC/C, we characterized at the molecular level one of its subunits, APC2, which is encoded by a single-copy gene in Arabidopsis. We show that the Arabidopsis gene is able to partially complement a budding yeast apc2 ts mutant. By yeast two-hybrid assays, we demonstrate an interaction of APC2 with two other APC/C subunits: APC11 and APC8/CDC23. A reverse-genetic approach identified Arabidopsis plants carrying T-DNA insertions in the APC2 gene. apc2 null mutants are impaired in female megagametogenesis and accumulate a cyclin-beta-glucuronidase reporter protein but do not display metaphase a...
Proceedings of the National Academy of Sciences, 2006
Nature, 2009
The early vertebrate skeletal muscle is a well-organized tissue in which the primitive muscle fib... more The early vertebrate skeletal muscle is a well-organized tissue in which the primitive muscle fibres, the myocytes, are all parallel and aligned along the antero-posterior axis of the embryo. How myofibres acquire their orientation during development is unknown. Here we show that during early chick myogenesis WNT11 has an essential role in the oriented elongation of the myocytes. We find that the neural tube, known to drive WNT11 expression in the medial border of somites 1 , is necessary and sufficient to orient myocyte elongation. We then show that the specific inhibition of WNT11 function in somites leads to the disorganization of myocytes. We establish that WNT11 mediates this effect through the evolutionary conserved planar cell polarity (PCP) pathway, downstream of the WNT/b-catenin-dependent pathway, required to initiate the myogenic program of myocytes and WNT11 expression. Finally, we demonstrate that a localized ectopic source of WNT11 can markedly change the orientation of myocytes, indicating that WNT11 acts as a directional cue in this process. All together, these data show that the sequential action of the WNT/PCP and the WNT/b-catenin pathways is necessary for the formation of fully functional embryonic muscle fibres. This study also provides evidence that WNTs can act as instructive cues to regulate the PCP pathway in vertebrates.
genesis, 2013
The use of shRNAmir to down-regulate the expression of genes of interest is a powerful tool for s... more The use of shRNAmir to down-regulate the expression of genes of interest is a powerful tool for studying gene function during early chick development. However, because of the limitations of electroporation-mediated transgenesis, the down-regulation of genes expressed at late stages of development in specific tissues is difficult to perform. By combining electroporation of a doxycycline-inducible, miR30based shRNA plasmid with the Tol2 genomic integration system, we are now able to down-regulate the expression of any gene of interest at defined stage of chicken development. genesis 00:1-9. V C 2013 Wiley Periodicals, Inc.
Developmental Biology, 2014
Satellite cells are resident stem cells of skeletal muscle, supplying myoblasts for post-natal mu... more Satellite cells are resident stem cells of skeletal muscle, supplying myoblasts for post-natal muscle growth, hypertrophy and repair. Many regulatory networks control satellite cell function, which includes EGF signalling via the ErbB family of receptors. Here we investigated the role of ErbB3 binding protein-1 (Ebp1) in regulation of myogenic stem cell proliferation and differentiation. Ebp1 is a well-conserved DNA/RNA binding protein that is implicated in cell growth, apoptosis and differentiation in many cell types. Of the two main Ebp1 isoforms, only p48 was expressed in satellite cells and C2C12 myoblasts. Although not present in quiescent satellite cells, p48 was strongly induced during activation, remaining at high levels during proliferation and differentiation. While retroviral-mediated over-expression of Ebp1 had only minor effects, siRNA-mediated Ebp1 knockdown inhibited both proliferation and differentiation of satellite cells and C2C12 myoblasts, with a clear failure of myotube formation. Ebp1-knockdown significantly reduced ErbB3 receptor levels, yet over-expression of ErbB3 in Ebp1 knockdown cells did not rescue differentiation. Ebp1 was also expressed by muscle cells during developmental myogenesis in mouse. Since Ebp1 is well-conserved between mouse and chick, we switched to chick to examine its role in muscle formation. In chick embryo, Ebp1 was expressed in the dermomyotome, and myogenic differentiation of muscle progenitors was inhibited by specific Ebp1 down-regulation using shRNA electroporation. These observations demonstrate a conserved function of Ebp1 in the regulation of embryonic muscle progenitors and adult muscle stem cells, which likely operates independently of ErbB3 signaling.
Current Biology, 2006
Cell polarity is commonly coordinated within the plane of a single tissue layer (planar polarity)... more Cell polarity is commonly coordinated within the plane of a single tissue layer (planar polarity), and hair positioning has been exploited as a simple marker for planar polarization of animal epithelia . The root epidermis of the plant Arabidopsis similarly reveals planar polarity of hair localization close to root tiporiented (basal) ends of hair-forming cells . Hair position is directed toward a concentration maximum of the hormone auxin in the root tip , but mechanisms driving this plant-specific planar polarity remain elusive. Here, we report that combinatorial action of the auxin influx carrier AUX1 [6, 7], ETHYLENE-INSENSITIVE2 (EIN2) [8], and GNOM [9] genes mediates the vector for coordinate hair positioning. In aux1;ein2;gnom eb triple mutant roots, hairs display axial (apical or basal) instead of coordinate polar (basal) position, and recruitment of Rho-of-Plant (ROP) GTPases to the hair initiation site reveals the same polar-to-axial switch. The auxin concentration gradient is virtually abolished in aux1;ein2;gnom eb roots, where locally applied auxin can coordinate hair positioning. Moreover, auxin overproduction in sectors of wild-type roots enhances planar ROP and hair polarity over long and short distances. Hence, auxin may provide vectorial information for planar polarity that requires combinatorial AUX1, EIN2, and GNOM activity upstream of ROP positioning.
Nucleic Acids Research, 1997
extended to other biological subjects and organisms so as to study gene regulatory networks in an... more extended to other biological subjects and organisms so as to study gene regulatory networks in an evolutionary perspective.