O. Vrana - Academia.edu (original) (raw)
Papers by O. Vrana
Nucleic Acids Research, 2009
Using electrophoresis and replication mapping, we show that the presence of DNA adducts of bifunc... more Using electrophoresis and replication mapping, we show that the presence of DNA adducts of bifunctional antitumor cisplatin or monodentate [PtCl(dien)]Cl (dien = diethylenetriamine) in the substrate DNA inhibits eukaryotic topoisomerase 1 (top1) action, the adducts of cisplatin being more effective. The presence of camptothecin in the samples of platinated DNA markedly enhances effects of Pt-DNA adducts on top1 activity. Interestingly, the effects of Pt-DNA adducts on the catalytic activity of top1 in the presence of camptothecin differ depending on the sequence context. A multiple metallation of the short nucleotide sequences on the scissile strand, immediately downstream of the cleavage site impedes the cleavage by top1. On the other hand, DNA cleavage by top1 at some cleavage sites which were not platinated in their close proximity is notably enhanced as a consequence of global platination of DNA. We suggest that this enhancement of DNA cleavage by top1 may consist in its inability to bind to other cleavage sites platinated in their close neighborhood; thus, more molecules of top1 may become available for cleavage at the sites where top1 normally cleaves and where platination does not interfere.
Ejc Supplements - EJC SUPPL, 2004
Molecular Pharmacology, 2006
The new platinum(IV) complex cis,trans,cis-[PtCl(2)(CH(3)COO)(2)-(NH(3))(1-adamantylamine)] [adam... more The new platinum(IV) complex cis,trans,cis-[PtCl(2)(CH(3)COO)(2)-(NH(3))(1-adamantylamine)] [adamplatin(IV)] seems promising for the perspective application in therapy of corresponding tumors. It is therefore of great interest to understand details of mechanisms underlying its biological efficacy. Cellular uptake of the drug, alterations in the target DNA induced by platinum drugs along with processing of platinum-induced damage to DNA and drug inactivation by sulfur-containing compounds belong to major pharmacological factors affecting antitumor effects of platinum compounds. We examined in the present work the significance of these factors in the mechanism of antitumor effects of adamplatin(IV) and compared the results with those of the parallel studies performed with "conventional" cisplatin. The results show that deactivation of adamplatin(IV) by sulfur-containing compounds (such as glutathione or metallothioneins) is likely to play a less significant role in the mechanism of resistance of tumor cells to adamplatin(IV) in contrast to the role of these reactions in the effects of cisplatin. Moreover, the treatment of tumor cells with adamplatin(IV) does not result in DNA modifications that would be markedly different from those produced by cisplatin. In contrast, the effects of other factors, such as enhanced accumulation of the drug in cells, strong inhibition of DNA polymerization by these adducts, lowered DNA repair, and DNA-protein cross-linking are different from the effects of these factors in the mechanism underlying activity of cisplatin. Hence, the differences between effects of adamplatin(IV) and cisplatin observed in the present work on molecular level may help understand the unique activity of adamplatin(IV).
Journal of Medicinal Chemistry, 2008
A selected chemical library of six platinum(II) complexes having 1,2-bis(aminomethyl)carbobicycli... more A selected chemical library of six platinum(II) complexes having 1,2-bis(aminomethyl)carbobicyclic ligands were synthesized after a rational design in order to evaluate their antiproliferative activity and the structure-activity relationships. The cytotoxicity studies were performed using cancer cell lines sensitive (A2780) and resistant (A2780R) to cisplatin. Excellent cytotoxicity was observed for most of complexes, which presented better resistance factors than cisplatin against the A2780R cell line. The interaction of these complexes with DNA, as the target biomolecule, was evaluated by several methods: DNA-platinum binding kinetics, changes in the DNA melting temperature, evaluation of the unwinding angle of supercoiled DNA, evaluation of the interstrand cross-links, and replication mapping. The kinetics of the interaction with glutathione was also investigated to better understand the resistant factors observed for the new complexes.
Journal of Inorganic Biochemistry, 2004
Polynuclear platinum compounds comprise a unique class of anticancer agents with chemical and bio... more Polynuclear platinum compounds comprise a unique class of anticancer agents with chemical and biological properties different from mononuclear platinum drugs. The lead compound of this class is bifunctional trinuclear platinum complex [[trans-PtCl(NH(3))(2)](2)mu-trans-Pt(NH(3))(2)[H(2)N(CH(2))(6)NH(2)](2)](4+) (1,0,1/t,t,t, BBR 3464). Interestingly, the geometry of the coordination spheres in this compound affects potency. For example, the central cis unit of [[trans-PtCl(NH(3))(2)](2)mu-cis-Pt(NH(3))(2)[H(2)N(CH(2))(6)NH(2)](2)](4+) (1,0,1/t,c,t, BBR 3499) results in substantially reduced cytotoxicity. It has been shown that the interactions of polynuclear platinum drugs with target DNA are distinct from the mononuclear-based cisplatin family. In the present work the DNA binding of 1,0,1/t,c,t in cell-free media was examined by the methods of molecular biophysics and compared to the binding of 1,0,1/t,t,t. The binding of 1,0,1/t,c,t is slower and less sequence specific. 1,0,1/t,c,t also forms on DNA long-range delocalized intrastrand and interstrand cross-links similarly as 1,0,1/t,t,t, although the frequency of interstrand adducts is markedly enhanced. Importantly, the adducts of 1,0,1/t,c,t distort DNA conformation and are repaired by cell-free extracts considerably more than the adducts of 1,0,1/t,t,t. It has been suggested that the unique properties of long-range interstrand cross-links of bifunctional trinuclear platinum complexes and resulting conformational alterations in DNA have critical consequences for their antitumor effects.
Drug Metabolism and Disposition, 2009
The in vitro metabolism of flupirtine, ethyl-N-[2-amino-6-(4-fluorophenylmethyl-amino)pyridine-3-... more The in vitro metabolism of flupirtine, ethyl-N-[2-amino-6-(4-fluorophenylmethyl-amino)pyridine-3-yl]carbamate, a centrally acting analgesic with muscle tone-reducing activity, was studied. Two flupirtine metabolites were already known: the N-acetylated analog D13223 and 4-fluorohippuric acid. The structure of flupirtine suggested that redox chemistry may play a role in metabolism, and cyclic voltammetry studies showed that the drug undergoes facile and irreversible redox reactions. Thus, oxidative metabolism was investigated first. With CYP3A1-induced rat liver microsomes an 18% turnover of flupirtine and a 20 to 25% turnover of D13223 took place over 30 min, but less than 5% turnover of flupirtine was observed with all human liver microsomal preparations tested, evidence that cytochrome P450 does not contribute appreciably to the metabolism in humans. Likewise, no involvement of human monoamine oxidase (isoforms A and B) was found for either flupirtine or D13223. In contrast, flupirtine was an excellent substrate for both human myeloperoxidase and horse radish peroxidase (HRP). These enzymes produced detectable amounts of oxidation products. Incubations of flupirtine with HRP produced an oxidation product that could be trapped with glutathione, the resulting glutathione conjugate was characterized by mass spectrometry and NMR. Metabolism of D13223 by both peroxidases was also observed but to a much lesser extent. Porcine liver esterases cleave the carbamate group of flupirtine, and both human N-acetyltransferases 1 and 2 acetylated the hydrolysis product, presumably descarboethoxyflupirtine, with nearly equal efficiencies to yield D13223. Incubations of human liver microsomes with flupirtine or the metabolite D13223 together with UDP-glucuronic acid gave two isomeric N-glucuronides in both cases.
Analytical Biochemistry, 1984
A simple polarographic assay for platinum determination in cis-dichlorodiammineplatinum(II)-DNA c... more A simple polarographic assay for platinum determination in cis-dichlorodiammineplatinum(II)-DNA complexes is described. The method makes it possible to determine the free (unbound) drug in the presence of DNA or platinum-DNA complex, i.e., without a separation of free drug and macromolecular components of the solution to be analyzed. This method is based on the polarographic activity of intact cis-dichlorodiammineplatinum(II) at -1.5 V, which can be measured by differential pulse polarography even in the presence of DNA or platinum-DNA complex. The lower level of analytical utility of this method is ca. 1 X 10(-6) M (195 ng of platinum/ml).
Biochemical Pharmacology, 2010
Please cite this article as: Kasparkova J, Suchankova T, Halamikova A, Zerzankova L, Vrana O, Mar... more Please cite this article as: Kasparkova J, Suchankova T, Halamikova A, Zerzankova L, Vrana O, Margiotta N, Natile G, Brabec V, Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring Pt II chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand, Biochemical Pharmacology (2008),
Nucleic Acids Research, 2009
Using electrophoresis and replication mapping, we show that the presence of DNA adducts of bifunc... more Using electrophoresis and replication mapping, we show that the presence of DNA adducts of bifunctional antitumor cisplatin or monodentate [PtCl(dien)]Cl (dien = diethylenetriamine) in the substrate DNA inhibits eukaryotic topoisomerase 1 (top1) action, the adducts of cisplatin being more effective. The presence of camptothecin in the samples of platinated DNA markedly enhances effects of Pt-DNA adducts on top1 activity. Interestingly, the effects of Pt-DNA adducts on the catalytic activity of top1 in the presence of camptothecin differ depending on the sequence context. A multiple metallation of the short nucleotide sequences on the scissile strand, immediately downstream of the cleavage site impedes the cleavage by top1. On the other hand, DNA cleavage by top1 at some cleavage sites which were not platinated in their close proximity is notably enhanced as a consequence of global platination of DNA. We suggest that this enhancement of DNA cleavage by top1 may consist in its inability to bind to other cleavage sites platinated in their close neighborhood; thus, more molecules of top1 may become available for cleavage at the sites where top1 normally cleaves and where platination does not interfere.
Ejc Supplements - EJC SUPPL, 2004
Molecular Pharmacology, 2006
The new platinum(IV) complex cis,trans,cis-[PtCl(2)(CH(3)COO)(2)-(NH(3))(1-adamantylamine)] [adam... more The new platinum(IV) complex cis,trans,cis-[PtCl(2)(CH(3)COO)(2)-(NH(3))(1-adamantylamine)] [adamplatin(IV)] seems promising for the perspective application in therapy of corresponding tumors. It is therefore of great interest to understand details of mechanisms underlying its biological efficacy. Cellular uptake of the drug, alterations in the target DNA induced by platinum drugs along with processing of platinum-induced damage to DNA and drug inactivation by sulfur-containing compounds belong to major pharmacological factors affecting antitumor effects of platinum compounds. We examined in the present work the significance of these factors in the mechanism of antitumor effects of adamplatin(IV) and compared the results with those of the parallel studies performed with "conventional" cisplatin. The results show that deactivation of adamplatin(IV) by sulfur-containing compounds (such as glutathione or metallothioneins) is likely to play a less significant role in the mechanism of resistance of tumor cells to adamplatin(IV) in contrast to the role of these reactions in the effects of cisplatin. Moreover, the treatment of tumor cells with adamplatin(IV) does not result in DNA modifications that would be markedly different from those produced by cisplatin. In contrast, the effects of other factors, such as enhanced accumulation of the drug in cells, strong inhibition of DNA polymerization by these adducts, lowered DNA repair, and DNA-protein cross-linking are different from the effects of these factors in the mechanism underlying activity of cisplatin. Hence, the differences between effects of adamplatin(IV) and cisplatin observed in the present work on molecular level may help understand the unique activity of adamplatin(IV).
Journal of Medicinal Chemistry, 2008
A selected chemical library of six platinum(II) complexes having 1,2-bis(aminomethyl)carbobicycli... more A selected chemical library of six platinum(II) complexes having 1,2-bis(aminomethyl)carbobicyclic ligands were synthesized after a rational design in order to evaluate their antiproliferative activity and the structure-activity relationships. The cytotoxicity studies were performed using cancer cell lines sensitive (A2780) and resistant (A2780R) to cisplatin. Excellent cytotoxicity was observed for most of complexes, which presented better resistance factors than cisplatin against the A2780R cell line. The interaction of these complexes with DNA, as the target biomolecule, was evaluated by several methods: DNA-platinum binding kinetics, changes in the DNA melting temperature, evaluation of the unwinding angle of supercoiled DNA, evaluation of the interstrand cross-links, and replication mapping. The kinetics of the interaction with glutathione was also investigated to better understand the resistant factors observed for the new complexes.
Journal of Inorganic Biochemistry, 2004
Polynuclear platinum compounds comprise a unique class of anticancer agents with chemical and bio... more Polynuclear platinum compounds comprise a unique class of anticancer agents with chemical and biological properties different from mononuclear platinum drugs. The lead compound of this class is bifunctional trinuclear platinum complex [[trans-PtCl(NH(3))(2)](2)mu-trans-Pt(NH(3))(2)[H(2)N(CH(2))(6)NH(2)](2)](4+) (1,0,1/t,t,t, BBR 3464). Interestingly, the geometry of the coordination spheres in this compound affects potency. For example, the central cis unit of [[trans-PtCl(NH(3))(2)](2)mu-cis-Pt(NH(3))(2)[H(2)N(CH(2))(6)NH(2)](2)](4+) (1,0,1/t,c,t, BBR 3499) results in substantially reduced cytotoxicity. It has been shown that the interactions of polynuclear platinum drugs with target DNA are distinct from the mononuclear-based cisplatin family. In the present work the DNA binding of 1,0,1/t,c,t in cell-free media was examined by the methods of molecular biophysics and compared to the binding of 1,0,1/t,t,t. The binding of 1,0,1/t,c,t is slower and less sequence specific. 1,0,1/t,c,t also forms on DNA long-range delocalized intrastrand and interstrand cross-links similarly as 1,0,1/t,t,t, although the frequency of interstrand adducts is markedly enhanced. Importantly, the adducts of 1,0,1/t,c,t distort DNA conformation and are repaired by cell-free extracts considerably more than the adducts of 1,0,1/t,t,t. It has been suggested that the unique properties of long-range interstrand cross-links of bifunctional trinuclear platinum complexes and resulting conformational alterations in DNA have critical consequences for their antitumor effects.
Drug Metabolism and Disposition, 2009
The in vitro metabolism of flupirtine, ethyl-N-[2-amino-6-(4-fluorophenylmethyl-amino)pyridine-3-... more The in vitro metabolism of flupirtine, ethyl-N-[2-amino-6-(4-fluorophenylmethyl-amino)pyridine-3-yl]carbamate, a centrally acting analgesic with muscle tone-reducing activity, was studied. Two flupirtine metabolites were already known: the N-acetylated analog D13223 and 4-fluorohippuric acid. The structure of flupirtine suggested that redox chemistry may play a role in metabolism, and cyclic voltammetry studies showed that the drug undergoes facile and irreversible redox reactions. Thus, oxidative metabolism was investigated first. With CYP3A1-induced rat liver microsomes an 18% turnover of flupirtine and a 20 to 25% turnover of D13223 took place over 30 min, but less than 5% turnover of flupirtine was observed with all human liver microsomal preparations tested, evidence that cytochrome P450 does not contribute appreciably to the metabolism in humans. Likewise, no involvement of human monoamine oxidase (isoforms A and B) was found for either flupirtine or D13223. In contrast, flupirtine was an excellent substrate for both human myeloperoxidase and horse radish peroxidase (HRP). These enzymes produced detectable amounts of oxidation products. Incubations of flupirtine with HRP produced an oxidation product that could be trapped with glutathione, the resulting glutathione conjugate was characterized by mass spectrometry and NMR. Metabolism of D13223 by both peroxidases was also observed but to a much lesser extent. Porcine liver esterases cleave the carbamate group of flupirtine, and both human N-acetyltransferases 1 and 2 acetylated the hydrolysis product, presumably descarboethoxyflupirtine, with nearly equal efficiencies to yield D13223. Incubations of human liver microsomes with flupirtine or the metabolite D13223 together with UDP-glucuronic acid gave two isomeric N-glucuronides in both cases.
Analytical Biochemistry, 1984
A simple polarographic assay for platinum determination in cis-dichlorodiammineplatinum(II)-DNA c... more A simple polarographic assay for platinum determination in cis-dichlorodiammineplatinum(II)-DNA complexes is described. The method makes it possible to determine the free (unbound) drug in the presence of DNA or platinum-DNA complex, i.e., without a separation of free drug and macromolecular components of the solution to be analyzed. This method is based on the polarographic activity of intact cis-dichlorodiammineplatinum(II) at -1.5 V, which can be measured by differential pulse polarography even in the presence of DNA or platinum-DNA complex. The lower level of analytical utility of this method is ca. 1 X 10(-6) M (195 ng of platinum/ml).
Biochemical Pharmacology, 2010
Please cite this article as: Kasparkova J, Suchankova T, Halamikova A, Zerzankova L, Vrana O, Mar... more Please cite this article as: Kasparkova J, Suchankova T, Halamikova A, Zerzankova L, Vrana O, Margiotta N, Natile G, Brabec V, Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring Pt II chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand, Biochemical Pharmacology (2008),