Oday Alahmad - Academia.edu (original) (raw)
Uploads
Papers by Oday Alahmad
Journal of Operation and Automation in Power Engineering, 2023
The widespread adoption of microgrids in electric power systems has brought numerous advantages s... more The widespread adoption of microgrids in electric power systems has brought numerous advantages such as decentralized control, reliability, cost-effectiveness, and environmental benefits. However, one of the most critical challenges faced by islanded microgrids is ensuring frequency and voltage stability. This paper addresses these stability issues that arise when microgrids operate independently, disconnected from the main network through the point of common coupling (PCC). These microgrids rely on renewable resources like photovoltaic (PV) systems, wind turbines, and energy storage systems, which often require DC to AC conversion through inverters to simulate synchronous generators. To overcome the frequency and voltage stability challenges, this research utilizes the droop control technique to regulate the active and reactive power of distribution generators (DGs). The droop control technique is implemented and simulated using MATLAB software, specifically employing a multi-DC bus-based inverter. The simulation results demonstrate that the DGs successfully supply the required total power to meet load demands while maintaining frequency and voltage stability. Through the droop control technique, active and reactive power sharing is achieved, ensuring stability at nominal values. The DGs can effectively maintain a constant power profile at desired values, even in the presence of static and dynamic loads.
Journal of Operation and Automation in Power Engineering, 2023
The widespread adoption of microgrids in electric power systems has brought numerous advantages s... more The widespread adoption of microgrids in electric power systems has brought numerous advantages such as decentralized control, reliability, cost-effectiveness, and environmental benefits. However, one of the most critical challenges faced by islanded microgrids is ensuring frequency and voltage stability. This paper addresses these stability issues that arise when microgrids operate independently, disconnected from the main network through the point of common coupling (PCC). These microgrids rely on renewable resources like photovoltaic (PV) systems, wind turbines, and energy storage systems, which often require DC to AC conversion through inverters to simulate synchronous generators. To overcome the frequency and voltage stability challenges, this research utilizes the droop control technique to regulate the active and reactive power of distribution generators (DGs). The droop control technique is implemented and simulated using MATLAB software, specifically employing a multi-DC bus-based inverter. The simulation results demonstrate that the DGs successfully supply the required total power to meet load demands while maintaining frequency and voltage stability. Through the droop control technique, active and reactive power sharing is achieved, ensuring stability at nominal values. The DGs can effectively maintain a constant power profile at desired values, even in the presence of static and dynamic loads.