Oren Livne - Academia.edu (original) (raw)
Uploads
Papers by Oren Livne
SIAM Journal on Scientific Computing, 2012
Laplacian matrices of graphs arise in large-scale computational applications such as machine lear... more Laplacian matrices of graphs arise in large-scale computational applications such as machine learning; spectral clustering of images, genetic data and web pages; transportation network flows; electrical resistor circuits; and elliptic partial differential equations discretized on unstructured grids with finite elements. A Lean Algebraic Multigrid (LAMG) solver of the linear system Ax = b is presented, where A is a graph Laplacian. LAMG's run time and storage are linear in the number of graph edges. LAMG consists of a setup phase, in which a sequence of increasingly-coarser Laplacian systems is constructed, and an iterative solve phase using multigrid cycles. General graphs pose algorithmic challenges not encountered in traditional applications of algebraic multigrid. LAMG combines a lean piecewise-constant interpolation, judicious node aggregation based on a new node proximity definition, and an energy correction of the coarse-level systems. This results in fast convergence and substantial overhead and memory savings. A serial LAMG implementation scaled linearly for a diverse set of 1666 real-world graphs with up to six million edges. This multilevel methodology can be fully parallelized and extended to eigenvalue problems and other graph computations.
SIAM Journal on Scientific Computing, 2012
Laplacian matrices of graphs arise in large-scale computational applications such as machine lear... more Laplacian matrices of graphs arise in large-scale computational applications such as machine learning; spectral clustering of images, genetic data and web pages; transportation network flows; electrical resistor circuits; and elliptic partial differential equations discretized on unstructured grids with finite elements. A Lean Algebraic Multigrid (LAMG) solver of the linear system Ax = b is presented, where A is a graph Laplacian. LAMG's run time and storage are linear in the number of graph edges. LAMG consists of a setup phase, in which a sequence of increasingly-coarser Laplacian systems is constructed, and an iterative solve phase using multigrid cycles. General graphs pose algorithmic challenges not encountered in traditional applications of algebraic multigrid. LAMG combines a lean piecewise-constant interpolation, judicious node aggregation based on a new node proximity definition, and an energy correction of the coarse-level systems. This results in fast convergence and substantial overhead and memory savings. A serial LAMG implementation scaled linearly for a diverse set of 1666 real-world graphs with up to six million edges. This multilevel methodology can be fully parallelized and extended to eigenvalue problems and other graph computations.