Pål Stenmark - Academia.edu (original) (raw)
Papers by Pål Stenmark
Nature communications, 2015
Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including... more Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including deoxyribonucleoside triphosphates (dNTPs). Targeting dNTP pool sanitizing enzymes, such as MTH1, is a highly promising anticancer strategy. The MTH2 protein, known as NUDT15, is described as the second human homologue of bacterial MutT with 8-oxo-dGTPase activity. We present the first NUDT15 crystal structure and demonstrate that NUDT15 prefers other nucleotide substrates over 8-oxo-dGTP. Key structural features are identified that explain different substrate preferences for NUDT15 and MTH1. We find that depletion of NUDT15 has no effect on incorporation of 8-oxo-dGTP into DNA and does not impact cancer cell survival in cell lines tested. NUDT17 and NUDT18 were also profiled and found to have far less activity than MTH1 against oxidized nucleotides. We show that NUDT15 is not a biologically relevant 8-oxo-dGTPase, and that MTH1 is the most prominent sanitizer of the cellular dNTP pool k...
Nature communications, 2015
Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including... more Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including deoxyribonucleoside triphosphates (dNTPs). Targeting dNTP pool sanitizing enzymes, such as MTH1, is a highly promising anticancer strategy. The MTH2 protein, known as NUDT15, is described as the second human homologue of bacterial MutT with 8-oxo-dGTPase activity. We present the first NUDT15 crystal structure and demonstrate that NUDT15 prefers other nucleotide substrates over 8-oxo-dGTP. Key structural features are identified that explain different substrate preferences for NUDT15 and MTH1. We find that depletion of NUDT15 has no effect on incorporation of 8-oxo-dGTP into DNA and does not impact cancer cell survival in cell lines tested. NUDT17 and NUDT18 were also profiled and found to have far less activity than MTH1 against oxidized nucleotides. We show that NUDT15 is not a biologically relevant 8-oxo-dGTPase, and that MTH1 is the most prominent sanitizer of the cellular dNTP pool k...
Science (New York, N.Y.), Jan 9, 2004
Ribonucleotide reductase (RNR) synthesizes the deoxyribonucleotides for DNA synthesis. The R2 pro... more Ribonucleotide reductase (RNR) synthesizes the deoxyribonucleotides for DNA synthesis. The R2 protein of normal class I ribonucleotide reductases contains a diiron site that produces a stable tyrosyl free radical, essential for enzymatic activity. Structural and electron paramagnetic resonance studies of R2 from Chlamydia trachomatis reveal a protein lacking a tyrosyl radical site. Instead, the protein yields an iron-coupled radical upon reconstitution. The coordinating structure of the diiron site is similar to that of diiron oxidases/monoxygenases and supports a role for this radical in the RNR mechanism. The specific ligand pattern in the C. trachomatis R2 metal site characterizes a new group of R2 proteins that so far has been found in eight organisms, three of which are human pathogens.
Proteins: Structure, Function, and Bioinformatics, 2009
The PP2A serine/threonine phosphatase regulates a plethora of cellular processes. In the cell the... more The PP2A serine/threonine phosphatase regulates a plethora of cellular processes. In the cell the predominant form of the enzyme is a heterotrimer, formed by a core dimer composed of a catalytic and a scaffolding subunit, which assemble together with one of a range of different regulatory B subunits. Here, we present the first structure of a free non-complexed B subunit, B56 gamma. Comparison with the recent structures of a heterotrimeric complex and the core dimer reveals several significant conformational changes in the interface region between the B56 gamma and the core dimer. These allow for an assembly scheme of the PP2A holoenzyme to be put forth where B56 gamma first complexes with the scaffolding subunit and subsequently binds to the catalytic subunit and this induces the formation of a binding site for the invariant C-terminus of the catalytic subunit that locks in the complex as a last step of assembly.
Proteins: Structure, Function, and Bioinformatics, 2008
Trésaugues, L., Stenmark, P., Schüler, H., Flodin, S., Welin, M., Nyman, T., Hammarström, M., Moc... more Trésaugues, L., Stenmark, P., Schüler, H., Flodin, S., Welin, M., Nyman, T., Hammarström, M., Moche, M., Gräslund, S. and Nordlund, P.(2008), The crystal structure of human cleavage and polyadenylation specific factor-5 reveals a dimeric Nudix protein with a ...
PLoS Pathogens, 2008
Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring ... more Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 Å and 1.6 Å, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 Å long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event. Citation: Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal Structure of Botulinum Neurotoxin Type A in Complex with the Cell Surface Co-Receptor GT1b-Insight into the Toxin-Neuron Interaction. PLoS Pathog 4(8): e1000129.
Nucleic Acids Research, 2010
Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, t... more Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, tri-functional GART, contains three enzymatic activities in a single polypeptide chain. We have solved structures of two domains bearing separate catalytic functions: glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. Structures are compared with those of homologous enzymes from prokaryotes and analyzed in terms of the catalytic mechanism. We also report small angle X-ray scattering models for the full-length protein. These models are consistent with the enzyme forming a dimer through the middle domain. The protein has an approximate seesaw geometry where terminal enzyme units display high mobility owing to flexible linker segments. This resilient seesaw shape may facilitate internal substrate/product transfer or forwarding to other enzymes in the pathway.
Nature Chemical Biology, 2011
Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong t... more Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 Å from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia.
Journal of Neurochemistry, 2007
Axonal growth cone guidance is a central process in nervous system development and repair. Collap... more Axonal growth cone guidance is a central process in nervous system development and repair. Collapsin response mediator protein 2 (CRMP-2) is a neurite extension-promoting neuronal cytosolic molecule involved in the signalling of growth inhibitory cues from external stimuli, such as semaphorin 3A and the myelin-associated glycoprotein. We have determined the crystal structure of human tetrameric CRMP-2, which is structurally related to the dihydropyriminidases; however, the active site is not conserved. The wealth of earlier functional mapping data for CRMP-2 are discussed in light of the threedimensional structure of the protein. The differences in oligomerisation interfaces between CRMP-1 and CRMP-2 are used to model CRMP-1/2 heterotetramers.
Journal of Molecular Biology, 2007
We have determined the crystal structure of the bi-functional deaminase/ reductase enzyme from Es... more We have determined the crystal structure of the bi-functional deaminase/ reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the Cterminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP + ) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast. A: 76-81, 105, 338-346 B: 75-84, 105, 162-169 Active site loop (159-173) conformation A: Accessible B: C&S-occluded A: Accessible B: C&S-occluded A: Substrate-occluded B: Disordered Figure 2. (a) The dimeric apo structure of RibD from E. coli with NADP + and ribose 5-phosphate from the binary complexes superposed to the reductase domain and (b) the reductase and deaminase topology diagrams.
Journal of Molecular Biology, 2010
Journal of Inorganic Biochemistry, 2003
Journal of Biological Chemistry, 2008
The Toll/interleukin-1 receptor (TIR) domain is a highly conserved signaling domain found in the ... more The Toll/interleukin-1 receptor (TIR) domain is a highly conserved signaling domain found in the intracellular regions of Toll-like receptors (TLRs), in interleukin-1 receptors, and in several cytoplasmic adaptor proteins. TIR domains mediate receptor signal transduction through recruitment of adaptor proteins and play critical roles in the innate immune response and inflammation. This work presents the 2.2A crystal structure of the TIR domain of human TLR10, revealing a symmetric dimer in the asymmetric unit. The dimer interaction surface contains residues from the BB-loop, DD-loop, and alphaC-helix, which have previously been identified as important structural motifs for signaling in homologous TLR receptors. The interaction surface is extensive, containing a central hydrophobic patch surrounded by polar residues. The BB-loop forms a tight interaction, where a range of consecutive residues binds in a pocket formed by the reciprocal BB-loop and alphaC-helix. This pocket appears to be well suited for binding peptide substrates, which is consistent with the notion that peptides and peptide mimetics of the BB-loop are inhibitors for TLR signaling. The TLR10 structure is in good agreement with available biochemical data on TLR receptors and is likely to provide a good model for the physiological dimer.
Journal of Biological Chemistry, 2007
Cytosolic 5&a... more Cytosolic 5'-nucleotidase II catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and regulates the IMP and GMP pools within the cell. It possesses phosphotransferase activity and thereby also catalyzes the reverse reaction. Both reactions are allosterically activated by adenine-based nucleotides and 2,3-bisphosphoglycerate. We have solved structures of cytosolic 5'-nucleotidase II as native protein (2.2 Angstrom) and in complex with adenosine (1.5 Angstrom) and beryllium trifluoride (2.15 Angstrom) The tetrameric enzyme is structurally similar to enzymes of the haloacid dehalogenase (HAD) superfamily, including mitochondrial 5'(3')-deoxyribonucleotidase and cytosolic 5'-nucleotidase III but possesses additional regulatory regions that contain two allosteric effector sites. At effector site 1 located near a subunit interface we modeled diadenosine tetraphosphate with one adenosine moiety in each subunit. This efficiently glues the tetramer subunits together in pairs. The model shows why diadenosine tetraphosphate but not diadenosine triphosphate activates the enzyme and supports a role for cN-II during apoptosis when the level of diadenosine tetraphosphate increases. We have also modeled 2,3-bisphosphoglycerate in effector site 1 using one phosphate site from each subunit. By comparing the structure of cytosolic 5'-nucleotidase II with that of mitochondrial 5'(3')-deoxyribonucleotidase in complex with dGMP, we identified residues involved in substrate recognition.
Journal of Biological Chemistry, 2007
Inosine triphosphatase (ITPA) is a ubiquitous key regulator of cellular non-canonical nucleotide ... more Inosine triphosphatase (ITPA) is a ubiquitous key regulator of cellular non-canonical nucleotide levels. It breaks down inosine and xanthine nucleotides generated by deamination of purine bases. Its enzymatic action prevents accumulation of ITP and reduces the risk of incorporation of potentially mutagenic inosine nucleotides into nucleic acids. Here we describe the crystal structure of human ITPA in complex with its prime substrate ITP, as well as the apoenzyme at 2.8 and 1.1A, respectively. These structures show for the first time the site of substrate and Mg2+ coordination as well as the conformational changes accompanying substrate binding in this class of enzymes. Enzyme substrate interactions induce an extensive closure of the nucleotide binding grove, resulting in tight interactions with the base that explain the high substrate specificity of ITPA for inosine and xanthine over the canonical nucleotides. One of the dimer contact sites is made up by a loop that is involved in coordinating the metal ion in the active site. We predict that the ITPA deficiency mutation P32T leads to a shift of this loop that results in a disturbed affinity for nucleotides and/or a reduced catalytic activity in both monomers of the physiological dimer.
Biochemistry, 2004
Carnitine is an important molecule in human metabolism, mainly because of its role in the transpo... more Carnitine is an important molecule in human metabolism, mainly because of its role in the transport of long-chain fatty acids across the inner mitochondrial membrane. Escherichia coli uses carnitine as a terminal electron acceptor during anaerobic metabolism. Bacteria present in our large intestine break down carnitine that is not absorbed in the small intestine. One part of this catabolic pathway is reversible and can be utilized for bioproduction of large amounts of stereochemically pure L-carnitine, which is used medically for the treatment of a variety of human diseases. Here, we present the crystal structure of the E. coli protein CaiB, which is a member of the recently identified type-III coenzyme A (CoA) transferase family and catalyzes the transfer of the CoA moiety between γ-butyrobetaine-CoA and carnitine forming carnityl-CoA and γ-butyrobetaine. This is the first protein from the carnitine metabolic pathway to be structurally characterized. The structure of CaiB reveals a spectacular fold where two monomers are interlaced to form an interlocked dimer. A molecule of the crystallization buffer bis-(2-hydroxyethyl)imino-tris(hydroxymethyl)methane (bis-tris) is bound in a large pocket located primarily in the small domain, and we propose that this pocket constitutes the binding site for both substrate moieties participating in the CaiB transfer reaction. The binding of CoA to CaiB induces a domain movement that closes the active site of the protein. This is the first observation of a domain movement in the type-III CoA transferase family and can play an important role in coupling substrate binding to initiation of the catalytic reaction.
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2007
A recently discovered subgroup of class I ribonucleotide reductase (RNR) found in the infectious ... more A recently discovered subgroup of class I ribonucleotide reductase (RNR) found in the infectious bacterium Chlamydia trachomatis (C. trachomatis) was shown to exhibit a high-valent Fe(III)Fe(IV) center instead of the tyrosyl radical observed normally in all class I RNRs. The X-ray structure showed that C. trachomatis WT RNR has a phenylalanine at the position of the active tyrosine in Escherichia coli RNR. In this paper the X-ray structure of variant F127Y is presented, where the tyrosine is restored. Using (1)H- and (57)Fe-ENDOR spectroscopy it is shown, that in WT and variants F127Y and Y129F of C. trachomatis RNR, the Fe(III)Fe(IV) center is virtually identical with the short-lived intermediate X observed during the iron oxygen reconstitution reaction in class I RNR from E. coli. The experimental data are consistent with a recent theoretical model for X, proposing two bridging oxo ligands and one terminal water ligand. A surprising extension of the lifetime of the Fe(III)Fe(IV) state in C. trachomatis from a few seconds to several hours at room temperature was observed under catalytic conditions in the presence of substrate. These findings suggest a possible new role for the Fe(III)Fe(IV) state also in other class I RNR, during the catalytic radical transfer reaction, by which the substrate turnover is started.
Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2006
PDB Reference: synthetase domain of human CTPS, 2c5m, r2c5msf.
Nature communications, 2015
Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including... more Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including deoxyribonucleoside triphosphates (dNTPs). Targeting dNTP pool sanitizing enzymes, such as MTH1, is a highly promising anticancer strategy. The MTH2 protein, known as NUDT15, is described as the second human homologue of bacterial MutT with 8-oxo-dGTPase activity. We present the first NUDT15 crystal structure and demonstrate that NUDT15 prefers other nucleotide substrates over 8-oxo-dGTP. Key structural features are identified that explain different substrate preferences for NUDT15 and MTH1. We find that depletion of NUDT15 has no effect on incorporation of 8-oxo-dGTP into DNA and does not impact cancer cell survival in cell lines tested. NUDT17 and NUDT18 were also profiled and found to have far less activity than MTH1 against oxidized nucleotides. We show that NUDT15 is not a biologically relevant 8-oxo-dGTPase, and that MTH1 is the most prominent sanitizer of the cellular dNTP pool k...
Nature communications, 2015
Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including... more Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including deoxyribonucleoside triphosphates (dNTPs). Targeting dNTP pool sanitizing enzymes, such as MTH1, is a highly promising anticancer strategy. The MTH2 protein, known as NUDT15, is described as the second human homologue of bacterial MutT with 8-oxo-dGTPase activity. We present the first NUDT15 crystal structure and demonstrate that NUDT15 prefers other nucleotide substrates over 8-oxo-dGTP. Key structural features are identified that explain different substrate preferences for NUDT15 and MTH1. We find that depletion of NUDT15 has no effect on incorporation of 8-oxo-dGTP into DNA and does not impact cancer cell survival in cell lines tested. NUDT17 and NUDT18 were also profiled and found to have far less activity than MTH1 against oxidized nucleotides. We show that NUDT15 is not a biologically relevant 8-oxo-dGTPase, and that MTH1 is the most prominent sanitizer of the cellular dNTP pool k...
Science (New York, N.Y.), Jan 9, 2004
Ribonucleotide reductase (RNR) synthesizes the deoxyribonucleotides for DNA synthesis. The R2 pro... more Ribonucleotide reductase (RNR) synthesizes the deoxyribonucleotides for DNA synthesis. The R2 protein of normal class I ribonucleotide reductases contains a diiron site that produces a stable tyrosyl free radical, essential for enzymatic activity. Structural and electron paramagnetic resonance studies of R2 from Chlamydia trachomatis reveal a protein lacking a tyrosyl radical site. Instead, the protein yields an iron-coupled radical upon reconstitution. The coordinating structure of the diiron site is similar to that of diiron oxidases/monoxygenases and supports a role for this radical in the RNR mechanism. The specific ligand pattern in the C. trachomatis R2 metal site characterizes a new group of R2 proteins that so far has been found in eight organisms, three of which are human pathogens.
Proteins: Structure, Function, and Bioinformatics, 2009
The PP2A serine/threonine phosphatase regulates a plethora of cellular processes. In the cell the... more The PP2A serine/threonine phosphatase regulates a plethora of cellular processes. In the cell the predominant form of the enzyme is a heterotrimer, formed by a core dimer composed of a catalytic and a scaffolding subunit, which assemble together with one of a range of different regulatory B subunits. Here, we present the first structure of a free non-complexed B subunit, B56 gamma. Comparison with the recent structures of a heterotrimeric complex and the core dimer reveals several significant conformational changes in the interface region between the B56 gamma and the core dimer. These allow for an assembly scheme of the PP2A holoenzyme to be put forth where B56 gamma first complexes with the scaffolding subunit and subsequently binds to the catalytic subunit and this induces the formation of a binding site for the invariant C-terminus of the catalytic subunit that locks in the complex as a last step of assembly.
Proteins: Structure, Function, and Bioinformatics, 2008
Trésaugues, L., Stenmark, P., Schüler, H., Flodin, S., Welin, M., Nyman, T., Hammarström, M., Moc... more Trésaugues, L., Stenmark, P., Schüler, H., Flodin, S., Welin, M., Nyman, T., Hammarström, M., Moche, M., Gräslund, S. and Nordlund, P.(2008), The crystal structure of human cleavage and polyadenylation specific factor-5 reveals a dimeric Nudix protein with a ...
PLoS Pathogens, 2008
Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring ... more Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 Å and 1.6 Å, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 Å long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event. Citation: Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal Structure of Botulinum Neurotoxin Type A in Complex with the Cell Surface Co-Receptor GT1b-Insight into the Toxin-Neuron Interaction. PLoS Pathog 4(8): e1000129.
Nucleic Acids Research, 2010
Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, t... more Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, tri-functional GART, contains three enzymatic activities in a single polypeptide chain. We have solved structures of two domains bearing separate catalytic functions: glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. Structures are compared with those of homologous enzymes from prokaryotes and analyzed in terms of the catalytic mechanism. We also report small angle X-ray scattering models for the full-length protein. These models are consistent with the enzyme forming a dimer through the middle domain. The protein has an approximate seesaw geometry where terminal enzyme units display high mobility owing to flexible linker segments. This resilient seesaw shape may facilitate internal substrate/product transfer or forwarding to other enzymes in the pathway.
Nature Chemical Biology, 2011
Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong t... more Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 Å from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia.
Journal of Neurochemistry, 2007
Axonal growth cone guidance is a central process in nervous system development and repair. Collap... more Axonal growth cone guidance is a central process in nervous system development and repair. Collapsin response mediator protein 2 (CRMP-2) is a neurite extension-promoting neuronal cytosolic molecule involved in the signalling of growth inhibitory cues from external stimuli, such as semaphorin 3A and the myelin-associated glycoprotein. We have determined the crystal structure of human tetrameric CRMP-2, which is structurally related to the dihydropyriminidases; however, the active site is not conserved. The wealth of earlier functional mapping data for CRMP-2 are discussed in light of the threedimensional structure of the protein. The differences in oligomerisation interfaces between CRMP-1 and CRMP-2 are used to model CRMP-1/2 heterotetramers.
Journal of Molecular Biology, 2007
We have determined the crystal structure of the bi-functional deaminase/ reductase enzyme from Es... more We have determined the crystal structure of the bi-functional deaminase/ reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the Cterminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP + ) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast. A: 76-81, 105, 338-346 B: 75-84, 105, 162-169 Active site loop (159-173) conformation A: Accessible B: C&S-occluded A: Accessible B: C&S-occluded A: Substrate-occluded B: Disordered Figure 2. (a) The dimeric apo structure of RibD from E. coli with NADP + and ribose 5-phosphate from the binary complexes superposed to the reductase domain and (b) the reductase and deaminase topology diagrams.
Journal of Molecular Biology, 2010
Journal of Inorganic Biochemistry, 2003
Journal of Biological Chemistry, 2008
The Toll/interleukin-1 receptor (TIR) domain is a highly conserved signaling domain found in the ... more The Toll/interleukin-1 receptor (TIR) domain is a highly conserved signaling domain found in the intracellular regions of Toll-like receptors (TLRs), in interleukin-1 receptors, and in several cytoplasmic adaptor proteins. TIR domains mediate receptor signal transduction through recruitment of adaptor proteins and play critical roles in the innate immune response and inflammation. This work presents the 2.2A crystal structure of the TIR domain of human TLR10, revealing a symmetric dimer in the asymmetric unit. The dimer interaction surface contains residues from the BB-loop, DD-loop, and alphaC-helix, which have previously been identified as important structural motifs for signaling in homologous TLR receptors. The interaction surface is extensive, containing a central hydrophobic patch surrounded by polar residues. The BB-loop forms a tight interaction, where a range of consecutive residues binds in a pocket formed by the reciprocal BB-loop and alphaC-helix. This pocket appears to be well suited for binding peptide substrates, which is consistent with the notion that peptides and peptide mimetics of the BB-loop are inhibitors for TLR signaling. The TLR10 structure is in good agreement with available biochemical data on TLR receptors and is likely to provide a good model for the physiological dimer.
Journal of Biological Chemistry, 2007
Cytosolic 5&a... more Cytosolic 5'-nucleotidase II catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and regulates the IMP and GMP pools within the cell. It possesses phosphotransferase activity and thereby also catalyzes the reverse reaction. Both reactions are allosterically activated by adenine-based nucleotides and 2,3-bisphosphoglycerate. We have solved structures of cytosolic 5'-nucleotidase II as native protein (2.2 Angstrom) and in complex with adenosine (1.5 Angstrom) and beryllium trifluoride (2.15 Angstrom) The tetrameric enzyme is structurally similar to enzymes of the haloacid dehalogenase (HAD) superfamily, including mitochondrial 5'(3')-deoxyribonucleotidase and cytosolic 5'-nucleotidase III but possesses additional regulatory regions that contain two allosteric effector sites. At effector site 1 located near a subunit interface we modeled diadenosine tetraphosphate with one adenosine moiety in each subunit. This efficiently glues the tetramer subunits together in pairs. The model shows why diadenosine tetraphosphate but not diadenosine triphosphate activates the enzyme and supports a role for cN-II during apoptosis when the level of diadenosine tetraphosphate increases. We have also modeled 2,3-bisphosphoglycerate in effector site 1 using one phosphate site from each subunit. By comparing the structure of cytosolic 5'-nucleotidase II with that of mitochondrial 5'(3')-deoxyribonucleotidase in complex with dGMP, we identified residues involved in substrate recognition.
Journal of Biological Chemistry, 2007
Inosine triphosphatase (ITPA) is a ubiquitous key regulator of cellular non-canonical nucleotide ... more Inosine triphosphatase (ITPA) is a ubiquitous key regulator of cellular non-canonical nucleotide levels. It breaks down inosine and xanthine nucleotides generated by deamination of purine bases. Its enzymatic action prevents accumulation of ITP and reduces the risk of incorporation of potentially mutagenic inosine nucleotides into nucleic acids. Here we describe the crystal structure of human ITPA in complex with its prime substrate ITP, as well as the apoenzyme at 2.8 and 1.1A, respectively. These structures show for the first time the site of substrate and Mg2+ coordination as well as the conformational changes accompanying substrate binding in this class of enzymes. Enzyme substrate interactions induce an extensive closure of the nucleotide binding grove, resulting in tight interactions with the base that explain the high substrate specificity of ITPA for inosine and xanthine over the canonical nucleotides. One of the dimer contact sites is made up by a loop that is involved in coordinating the metal ion in the active site. We predict that the ITPA deficiency mutation P32T leads to a shift of this loop that results in a disturbed affinity for nucleotides and/or a reduced catalytic activity in both monomers of the physiological dimer.
Biochemistry, 2004
Carnitine is an important molecule in human metabolism, mainly because of its role in the transpo... more Carnitine is an important molecule in human metabolism, mainly because of its role in the transport of long-chain fatty acids across the inner mitochondrial membrane. Escherichia coli uses carnitine as a terminal electron acceptor during anaerobic metabolism. Bacteria present in our large intestine break down carnitine that is not absorbed in the small intestine. One part of this catabolic pathway is reversible and can be utilized for bioproduction of large amounts of stereochemically pure L-carnitine, which is used medically for the treatment of a variety of human diseases. Here, we present the crystal structure of the E. coli protein CaiB, which is a member of the recently identified type-III coenzyme A (CoA) transferase family and catalyzes the transfer of the CoA moiety between γ-butyrobetaine-CoA and carnitine forming carnityl-CoA and γ-butyrobetaine. This is the first protein from the carnitine metabolic pathway to be structurally characterized. The structure of CaiB reveals a spectacular fold where two monomers are interlaced to form an interlocked dimer. A molecule of the crystallization buffer bis-(2-hydroxyethyl)imino-tris(hydroxymethyl)methane (bis-tris) is bound in a large pocket located primarily in the small domain, and we propose that this pocket constitutes the binding site for both substrate moieties participating in the CaiB transfer reaction. The binding of CoA to CaiB induces a domain movement that closes the active site of the protein. This is the first observation of a domain movement in the type-III CoA transferase family and can play an important role in coupling substrate binding to initiation of the catalytic reaction.
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2007
A recently discovered subgroup of class I ribonucleotide reductase (RNR) found in the infectious ... more A recently discovered subgroup of class I ribonucleotide reductase (RNR) found in the infectious bacterium Chlamydia trachomatis (C. trachomatis) was shown to exhibit a high-valent Fe(III)Fe(IV) center instead of the tyrosyl radical observed normally in all class I RNRs. The X-ray structure showed that C. trachomatis WT RNR has a phenylalanine at the position of the active tyrosine in Escherichia coli RNR. In this paper the X-ray structure of variant F127Y is presented, where the tyrosine is restored. Using (1)H- and (57)Fe-ENDOR spectroscopy it is shown, that in WT and variants F127Y and Y129F of C. trachomatis RNR, the Fe(III)Fe(IV) center is virtually identical with the short-lived intermediate X observed during the iron oxygen reconstitution reaction in class I RNR from E. coli. The experimental data are consistent with a recent theoretical model for X, proposing two bridging oxo ligands and one terminal water ligand. A surprising extension of the lifetime of the Fe(III)Fe(IV) state in C. trachomatis from a few seconds to several hours at room temperature was observed under catalytic conditions in the presence of substrate. These findings suggest a possible new role for the Fe(III)Fe(IV) state also in other class I RNR, during the catalytic radical transfer reaction, by which the substrate turnover is started.
Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2006
PDB Reference: synthetase domain of human CTPS, 2c5m, r2c5msf.