Pijirawuch Wiengchanda - Academia.edu (original) (raw)
Uploads
Papers by Pijirawuch Wiengchanda
International Journal of Mechanical Engineering and Robotics Research
This article describes the novel design and implementation of the Robot Operating System (ROS) fo... more This article describes the novel design and implementation of the Robot Operating System (ROS) for the autonomous quadrotor landing on ArUco marker application. On a Raspberry Pi 4 companion computer, the ROS was set up using Ubuntu Mate 18.04. Then, to create communication between program nodes, ROS was put into practice together with autonomous landing. In the control approach, the Visual Inertial Odometry (VIO) technique, which uses vision-based localization, is employed to estimate the 3D posture. For computing the command control to direct movement quadrotor to landing on ArUco marker, the autolanding application is built. In experimental, 25 landing experiment trials were completed. The distance between the Drone's camera's center and the ArUco marker's center was calculated. In the results, the average distance accuracy during experimental validation was 11.12 cm, with a standard deviation of 3.67 cm.
International Journal of Mechanical Engineering and Robotics Research
This article describes the novel design and implementation of the Robot Operating System (ROS) fo... more This article describes the novel design and implementation of the Robot Operating System (ROS) for the autonomous quadrotor landing on ArUco marker application. On a Raspberry Pi 4 companion computer, the ROS was set up using Ubuntu Mate 18.04. Then, to create communication between program nodes, ROS was put into practice together with autonomous landing. In the control approach, the Visual Inertial Odometry (VIO) technique, which uses vision-based localization, is employed to estimate the 3D posture. For computing the command control to direct movement quadrotor to landing on ArUco marker, the autolanding application is built. In experimental, 25 landing experiment trials were completed. The distance between the Drone's camera's center and the ArUco marker's center was calculated. In the results, the average distance accuracy during experimental validation was 11.12 cm, with a standard deviation of 3.67 cm.