Pijirawuch Wiengchanda - Academia.edu (original) (raw)

Uploads

Papers by Pijirawuch Wiengchanda

Research paper thumbnail of Implementation of Robot Operating System in Raspberry Pi 4 for Autonomous Landing Quadrotor on ArUco Marker

International Journal of Mechanical Engineering and Robotics Research

This article describes the novel design and implementation of the Robot Operating System (ROS) fo... more This article describes the novel design and implementation of the Robot Operating System (ROS) for the autonomous quadrotor landing on ArUco marker application. On a Raspberry Pi 4 companion computer, the ROS was set up using Ubuntu Mate 18.04. Then, to create communication between program nodes, ROS was put into practice together with autonomous landing. In the control approach, the Visual Inertial Odometry (VIO) technique, which uses vision-based localization, is employed to estimate the 3D posture. For computing the command control to direct movement quadrotor to landing on ArUco marker, the autolanding application is built. In experimental, 25 landing experiment trials were completed. The distance between the Drone's camera's center and the ArUco marker's center was calculated. In the results, the average distance accuracy during experimental validation was 11.12 cm, with a standard deviation of 3.67 cm.

Research paper thumbnail of Implementation of Robot Operating System in Raspberry Pi 4 for Autonomous Landing Quadrotor on ArUco Marker

International Journal of Mechanical Engineering and Robotics Research

This article describes the novel design and implementation of the Robot Operating System (ROS) fo... more This article describes the novel design and implementation of the Robot Operating System (ROS) for the autonomous quadrotor landing on ArUco marker application. On a Raspberry Pi 4 companion computer, the ROS was set up using Ubuntu Mate 18.04. Then, to create communication between program nodes, ROS was put into practice together with autonomous landing. In the control approach, the Visual Inertial Odometry (VIO) technique, which uses vision-based localization, is employed to estimate the 3D posture. For computing the command control to direct movement quadrotor to landing on ArUco marker, the autolanding application is built. In experimental, 25 landing experiment trials were completed. The distance between the Drone's camera's center and the ArUco marker's center was calculated. In the results, the average distance accuracy during experimental validation was 11.12 cm, with a standard deviation of 3.67 cm.

Log In