Patrick Cahalan - Academia.edu (original) (raw)

Papers by Patrick Cahalan

Research paper thumbnail of In vivo behavior of epoxy-crosslinked porcine heart valve cusps and walls

Journal of Biomedical Materials Research, 2000

Calcification limits the long-term durability of xenograft glutaraldehyde-crosslinked heart valve... more Calcification limits the long-term durability of xenograft glutaraldehyde-crosslinked heart valves. In this study, epoxy-crosslinked porcine aortic valve tissue was evaluated after subcutaneous implantation in weanling rats. Non-crosslinked valves and valves crosslinked with glutaraldehyde or carbodiimide functioned as control. Epoxy-crosslinked valves had somewhat lower shrinkage temperatures than the crosslinked controls, and within the series also some macroscopic and microscopic differences were obvious. After 8 weeks implantation, cusps from non-crosslinked valves were not retrieved. The matching walls were more degraded than the epoxy- and control-crosslinked walls. This was observed from the higher cellular ingrowth with fibroblasts, macrophages, and giant cells. Furthermore, non-crosslinked walls showed highest numbers of lymphocytes, which were most obvious in the capsules. Epoxy- and control-crosslinked cusps and walls induced lower reactions. Calcification, measured by von Kossa-staining and by Ca-analysis, was always observed. Crosslinked cusps calcified more than walls. Of all wall samples, the non-crosslinked walls showed the highest calcification. It is concluded that epoxy-crosslinked valve tissue induced a foreign body and calcification reaction similar to the two crosslinked controls. Therefore, epoxy-crosslinking does not represent a solution for the calcification problem of heart valve bioprostheses.

Research paper thumbnail of Heparin coating of tantalum coronary stents reduces surface thrombin generation but not factor IXa generation

Blood Coagulation & Fibrinolysis, 1998

In the present study we used an in-vitro technique to examine initiation and propagation of blood... more In the present study we used an in-vitro technique to examine initiation and propagation of blood coagulation at the surface of tantalum coronary stents exposed to flowing platelet-rich and platelet-free plasma. The time course of factor IXa production at the surface of the stent was not influenced by platelets. In spite of a significant factor IXa production, no thrombin activity was detected when the tantalum stent was exposed to platelet-free plasma; only when the stent was exposed to platelet-rich plasma was extensive thrombin production observed. These findings indicate that tantalum triggers blood coagulation, but that (adherent) platelets are essential for thrombin generation. Heparin-coated tantalum stents exposed to flowing platelet-rich plasma showed that factor IXa generation was slightly reduced compared with the bare stent. However, the heparin coating drastically delayed the onset of thrombin generation and largely reduced the steady-state production of thrombin. We found a clear relationship between the antithrombin binding capacity and the antithrombogenic potential of the heparin-coated stents. The mode of action of immobilized heparin is thought to abrogate thrombin generation by inhibiting thrombin-dependent positive feedback reactions at the surface of the coronary stent.

Research paper thumbnail of Animal study on surface-modified defibrillator systems: Indications for enhanced infection resistance

Journal of Biomedical Materials Research, 2001

One of the most important problems with ICD systems is infection. The aim of this study was an in... more One of the most important problems with ICD systems is infection. The aim of this study was an in vivo evaluation of the efficacy of defibrillator systems in terms of infection resistance. The polyurethane leads were coupled with heparin and loaded with the antibiotic gentamicin, while the PGs were modified to release gentamicin. Group I was comprised of 10 pigs implanted with either a standard or a modified system for 2 weeks; group II was implanted during 4 weeks. The lead was inserted into the heart wall via the jugular vein. The other end was subcutaneously tunneled to the armpit where the PG was positioned. A cocktail of Staphylococcus aureus and epidermidis was injected at the site of the PG. Evaluation was performed macroscopically, by taking bacterial swabs during explantation and by microscopic processing. The results showed that 3 out of 5 modified defibrillator-systems in group I and 1–2 out of 5 in group II were judged as noninfected, whereas all standard systems were infected. Infection rates of the remaining modified defibrillators showed variances, as found with the standards, from slight to moderate to high, to even high/severe in group II (1× standard and 1× modified). With the modified systems, this may be related to production of humoral factors by an intensified early tissue reaction, as indicated by a swelling at day 6 at the site of the PG. When infected, whether or not modified, usually only Staphylococcus aureus was present. Spreading of infection seemed to occur by inoculation via blood, for example, based on the observation that group II in general showed an increase in infected fibrotic overgrowth in the heart, while infectious problems were low in the jugular vein. It is concluded that the modification at short term shows enhanced infection resistance. An increased infection rate already at 4 weeks, however, indicates that the modification may not hold in the long run. Special attention is needed concerning the more intense early tissue reaction. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 384–392, 2001

Research paper thumbnail of The kinetics of 1,4‐butanediol diglycidyl ether crosslinking of dermal sheep collagen

Journal of Biomedical Materials Research, 2000

Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified wi... more Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified with glycidyl isopropyl ether (PGE). The reduction in amine groups as a function of time was followed to study the overall reaction kinetics of collagen with either BDDGE or PGE. Linearization of the experimental data resulted in a reaction order of 2 with respect to the amine groups in the PGE masking reaction, whereas a reaction order of 2.5 was obtained in the BDDGE crosslinking reaction. The reaction orders were independent of the pH in the range of 8.5-10.5 and the reagent concentration (1-4 wt %). The reaction order with respect to epoxide groups was equal to 1 for both reagents. As expected, the reaction rate was favored by a higher reagent concentration and a higher solution pH. Because the BDDGE crosslinking reaction occurs via two distinct reaction steps, the content of pendant epoxide groups in the collagen matrix was determined by treating the collagen with either O-phosphoryl ethanolamine or lysine methyl ester. The increase in either phosphor or primary amine groups was related to the content of pendant groups. Crosslinking at pH 9.0 resulted in a low reaction rate but in a high crosslink efficacy, especially after prolonged reaction times. A maximum concentration of pendant epoxide groups was detected after 50 h. Reaction at pH 10.0 was faster, but a lower crosslinking efficacy was obtained. At pH 10.0, the ratio between pendant epoxide groups and crosslinks was almost equal to 1 during the course of the crosslinking reaction.

Research paper thumbnail of Animal study on surface‐modified defibrillator systems: Indications for enhanced infection resistance

Journal of Biomedical Materials Research, 2001

One of the most important problems with ICD systems is infection. The aim of this study was an in... more One of the most important problems with ICD systems is infection. The aim of this study was an in vivo evaluation of the efficacy of defibrillator systems in terms of infection resistance. The polyurethane leads were coupled with heparin and loaded with the antibiotic gentamicin, while the PGs were modified to release gentamicin. Group I was comprised of 10 pigs implanted with either a standard or a modified system for 2 weeks; group II was implanted during 4 weeks. The lead was inserted into the heart wall via the jugular vein. The other end was subcutaneously tunneled to the armpit where the PG was positioned. A cocktail of Staphylococcus aureus and epidermidis was injected at the site of the PG. Evaluation was performed macroscopically, by taking bacterial swabs during explantation and by microscopic processing. The results showed that 3 out of 5 modified defibrillator-systems in group I and 1–2 out of 5 in group II were judged as noninfected, whereas all standard systems were infected. Infection rates of the remaining modified defibrillators showed variances, as found with the standards, from slight to moderate to high, to even high/severe in group II (1× standard and 1× modified). With the modified systems, this may be related to production of humoral factors by an intensified early tissue reaction, as indicated by a swelling at day 6 at the site of the PG. When infected, whether or not modified, usually only Staphylococcus aureus was present. Spreading of infection seemed to occur by inoculation via blood, for example, based on the observation that group II in general showed an increase in infected fibrotic overgrowth in the heart, while infectious problems were low in the jugular vein. It is concluded that the modification at short term shows enhanced infection resistance. An increased infection rate already at 4 weeks, however, indicates that the modification may not hold in the long run. Special attention is needed concerning the more intense early tissue reaction. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 384–392, 2001

Research paper thumbnail of Factors and Interactions Affecting the Performance of Polyurethane Elastomers in Medical Devices

Journal of Biomaterials Applications, 1988

Polyurethanes offer the greatest versatility in compositions and properties of any family of poly... more Polyurethanes offer the greatest versatility in compositions and properties of any family of polymers. For implantable medical devices, a few specific elastomeric polyurethane compositions have demonstrated a combination of toughness, durability, biocompatibility and biostability not achieved by any other available material. Because of the complex behavior of implantable polyurethanes in the body environment, designers and fabricators of polyurethane-containing devices must pay particular attention to the choice of composition and design of components. Subsequent treatment during qualification, fabrication, sterilization, storage, implantation, in vivo operation and explantation also determine the performance and provide the means for assessing the efficacy of the polyurethane in the implanted device.

Research paper thumbnail of Simplified procedure for forming polymer-based ion-selective electrodes

Analytical Chemistry, 1985

Research paper thumbnail of Antithrombin activity of surface-bound heparin studied under flow conditions

Journal of Biomedical Materials Research, 1995

Polyacrylamide-grafted polyetherurethane sheets were modified by end-point and multipoint attachm... more Polyacrylamide-grafted polyetherurethane sheets were modified by end-point and multipoint attachment of heparin. The surface-bound heparin was firmly attached. No release of heparin activity could be detected when the surface was rinsed at a wall shear rate of 2000 s−1. Uptake of antithrombin and thrombin inactivation were investigated under well-defined flow conditions by the use of a spinning device with an attached disk-shaped heparinized surface. It is demonstrated that the rate of thrombin inactivation at the antithrombin-heparin surface equals the maximal rate of transport of thrombin toward the surface when the surface coverage of antithrombin exceeds 10 pmol/cm2. This result indicates that a higher intrinsic catalytic efficiency of a surface does not necessarily result in a higher antithrombin activity. We varied the heparin content of the surfaces between 0 and 35 μg/cm2 by increasing the number of functional groups to which heparin could be covalently attached. The uptake of antithrombin increased with the heparin content of the surface, but the stoichiometry decreased from 2 to 0.5 pmol antithrombin/μg heparin. Apparently, antithrombin could not bind to heparins buried in the poly(acrylamide) layer. The rate of thrombin inactivation at surfaces with low heparin content (2 μg/cm2) fells below the transport limit of thrombin and became proportional with the heparin content of the surface. Although the contribution of surface-bound heparin to the neutralization of fluidphase thrombin was found to be negligible compared with the effect of fluid-phase antithrombin at physiologic relevant concentrations, these heparinized surfaces markedly delayed the onset of thrombin generation in platelet-rich plasma. It is concluded that the inhibition of locally produced thrombin might contribute to the thromboresistance of the heparinized surface. © 1995 John Wiley & Sons, Inc.

Research paper thumbnail of The kinetics of 1,4-butanediol diglycidyl ether crosslinking of dermal sheep collagen

Journal of Biomedical Materials Research, 2000

Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified wi... more Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified with glycidyl isopropyl ether (PGE). The reduction in amine groups as a function of time was followed to study the overall reaction kinetics of collagen with either BDDGE or PGE. Linearization of the experimental data resulted in a reaction order of 2 with respect to the amine groups in the PGE masking reaction, whereas a reaction order of 2.5 was obtained in the BDDGE crosslinking reaction. The reaction orders were independent of the pH in the range of 8.5-10.5 and the reagent concentration (1-4 wt %). The reaction order with respect to epoxide groups was equal to 1 for both reagents. As expected, the reaction rate was favored by a higher reagent concentration and a higher solution pH. Because the BDDGE crosslinking reaction occurs via two distinct reaction steps, the content of pendant epoxide groups in the collagen matrix was determined by treating the collagen with either O-phosphoryl ethanolamine or lysine methyl ester. The increase in either phosphor or primary amine groups was related to the content of pendant groups. Crosslinking at pH 9.0 resulted in a low reaction rate but in a high crosslink efficacy, especially after prolonged reaction times. A maximum concentration of pendant epoxide groups was detected after 50 h. Reaction at pH 10.0 was faster, but a lower crosslinking efficacy was obtained. At pH 10.0, the ratio between pendant epoxide groups and crosslinks was almost equal to 1 during the course of the crosslinking reaction.

Research paper thumbnail of Ventricular Sourcing An Alternative to Traditional Coronary Artery Bypass

Research paper thumbnail of Direct Left Ventricle-to-Coronary Artery Stent Restores Perfusion to Chronic Ischemic Swine Myocardium

Heart Surgery Forum, 2006

Direct left ventricle (LV)-to-coronary artery shunts (VSTENT) have been proposed as an alternativ... more Direct left ventricle (LV)-to-coronary artery shunts (VSTENT) have been proposed as an alternative means of myocardial revascularization. The goal of this study was to examine quantitative changes in myocardial perfusion and possible mechanisms of revascularization with an LV-to-coronary shunt. Ameroid occluders were implanted on the proximal left anterior descending coronary artery (LAD) of 6 pigs to create chronic ischemia. Four weeks later, a VSTENT was placed to directly connect the distal LAD with the LV chamber. Animals survived for an additional 3 weeks and received periodic bromodeoxyuridine (BrdU) injections to identify dividing cells to identify and quantify angiogenesis. Regional myocardial perfusion (RMP) was measured with color microspheres under adenosine vasodilatory stress before and 3 weeks after VSTENT implantation. Vascularity was assessed histologically by an overall vascularity index and a growth index reflecting the density of BrdU-positive vascular cells. Three weeks after VSTENT placement, RMP improved from 38.4% +/- 19.6% of non-ischemic flow to 86.8% +/- 13.7% in treated animals (P < .05). This benefit was accompanied by histological evidence of increased vascularity and vascular proliferation. Four of 5 animals had patent and functional devices at the end of the study. Chronic VSTENT placement improves RMP and may promote arterial remodeling in chronically ischemic porcine myocardium.

Research paper thumbnail of the Treatment of Coronary Artery Disease Intramyocardial Left Ventricle-to-Coronary Artery Stent: A Novel Approach for

Research paper thumbnail of Intramyocardial Left Ventricle-to-Coronary Artery Stent: A Novel Approach for the Treatment of Coronary Artery Disease

Annals of Thoracic Surgery, 2005

Background. The direct intramyocardial left ventricleto-coronary artery stent may provide an opti... more Background. The direct intramyocardial left ventricleto-coronary artery stent may provide an optional minimally invasive technique for coronary artery bypass graft surgery. We seek to test whether blood flow and regional myocardial function improve with this stent in totally ischemic myocardium.

Research paper thumbnail of Direct Left Ventricle to Great Cardiac Vein Retroperfusion: A Novel Alternative to Myocardial Revascularization

Heart Surgery Forum, 2006

As the number of patients with diffuse coronary artery disease continues to grow, there is renewe... more As the number of patients with diffuse coronary artery disease continues to grow, there is renewed interest in alternative methods of perfusing the ischemic myocardium. We tested the feasibility of myocardial retroperfusion via a direct left ventricle-to-great cardiac vein (LV-GCV) conduit to support regional contractility in this setting. LV-GCV flow was established using an extracorporeal circuit in 5 dogs. Left ventricle (LV) pressure, aortic pressure, regional myocardial segment length, and circuit blood flow were measured prior to left anterior descending coronary artery (LAD) ligation, following LAD ligation, and after LV-GCV circuit placement. To eliminate backward flow during diastole, an in-line flow regulator was placed. Regional myocardial function was quantified by pressure-segment length loop area divided by end-diastolic segment length (PSLA/EDSL). LAD ligation reduced PSLA/EDSL from 10.0 +/- 1.2 mm Hg mm to 1.6 +/- 0.3 mm Hg mm (P < .05). With LV-GCV retroperfusion, mean peak systolic flow was +152 +/- 14 mL/min, mean peak diastolic flow was -39 +/- 11 mL/min, and net mean flow was +36 +/- 13 mL/min. Regional function recovered to approximately 39% of baseline (3.9 +/- 0.4 mm Hg mm, P < .05). Upon elimination of backflow, mean flow increased to +41 +/- 12 mL/min and regional function recovered even further to approximately 47% of baseline (4.6 +/- 0.7 mm Hg mm, P < .05). A LV-GCV circuit can significantly restore regional function to the acutely ischemic myocardium. An inline valve that eliminates backward diastolic flow improves regional function even further. This approach may provide an effective therapy for diffuse coronary disease not amenable to traditional revascularization strategies.

Research paper thumbnail of Correlation of the surface chemistries of polymer bioactive coatings, with their biological performances

Journal of Materials Science-materials in Medicine, 1995

Surface analysis techniques have been used to characterize heparin-containing bioactive coatings.... more Surface analysis techniques have been used to characterize heparin-containing bioactive coatings. The relationship between uncoated polymer, intermediate coupling and final layer surface chemistry upon the overall quality of the coating system has been investigated. The results present data from ToFSIMS, XPS and bioactivity in terms of thrombin deactivation as measured using chromogenic assay technique on heparin-based coatings on polymer surfaces including LDPE and PVC. The effect of pretreatment of uncoated polymer surfaces has been investigated where a number of effects critical to coating performance have been identified. Studies of the intermediate coupling regime show how the first and final stages of coupling are the most critical. Finally it is shown how the integrity, mean thickness and chemical state of the heparin final layer can be measured using a combination of ToFSIMS and XPS.

Research paper thumbnail of Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies

Biomaterials, 2003

Collagen was covalently linked to the surface of Titanium (Ti) by a surface modification process ... more Collagen was covalently linked to the surface of Titanium (Ti) by a surface modification process involving deposition of a thin film from hydrocarbon plasma followed by acrylic acid grafting. The composition and properties of surface-modified Ti were investigated by a number of surface sensitive techniques: XPS, ATR-IR, atomic force microscopy and AFM force-separation curves. In vitro tests were performed to check samples cytotoxicity and the behavior of osteoblast-like SaOS-2 cells. In vivo experiments involved 12 weeks implants in rabbit muscle as general biocompatibility assessment and 1-month implants in rabbit bone to evaluate the effect of surface modification on osteointegration rate. Results of XPS measurements show how surface chemistry is affected throughout each step of the surface modification process, finally leading to a complete and homogeneous collagen overlayer on top of the Ti samples. AFM data clearly display the modification of the surface topography and of the surface area of the samples as a consequence of the grafting and coupling process. AFM force-distance curves show that the interfacial structure responds by shrinking or swelling to variations of ionic force of the surrounding aqueous environment, suggesting that the aqueous interface of the biochemically modified Ti samples has enhanced degrees of freedom as compared to the inorganic surface of plain Ti. As to biological evaluations, the biochemically modified Ti samples are safe in terms of cytotoxicity and in vivo biocompatibility assessment. SaOS-2 cells growth rate is lower on collagen modified surfaces, and no significant difference is detected in terms of alkaline phosphatase production as compared to control Ti. Importantly, implants in rabbit femur show a significant increase of bone growth and bone-to-implant contact in the case of the collagen modified samples, confirming that biochemical modifications of Ti surface can enhance the rate of bone healing as compared to plain Ti. r

Research paper thumbnail of Thrombogenicity of polysaccharide-coated surfaces

Biomaterials, 2003

Heparinization of artificial surfaces has been proven to reduce the intrinsic thrombogenicity of ... more Heparinization of artificial surfaces has been proven to reduce the intrinsic thrombogenicity of such surfaces. The mechanism by which immobilized heparin reduces thrombogenicity is not completely understood. In the present study heparin-, alginic acid-and chondroitin-6-sulphate-coated surfaces were examined for protein adsorption, platelet adhesion and thrombin generation. The protein-binding capacity from solutions of purified proteins was significantly higher for heparin-coated surfaces when compared with alginic acid-and chondroitin sulphate-coated surfaces. Yet, when the surfaces were exposed to flowing plasma, only the heparinized surface adsorbed significant amounts of antithrombin. None of the surfaces adsorbed fibrinogen under these conditions, and as a result no platelets adhered from flowing whole blood. Our results indicate that protein adsorption and platelet adhesion from anticoagulated blood cannot be used to assess the thrombogenicity of (coated) artificial surfaces. Indeed, the thrombin generation potentials of the different surfaces varied remarkable: while non-coated surface readily produced thrombin, alginic acidand chondroitin sulphate-coated surfaces showed a marked reduction and virtually no thrombin was generated in flowing whole blood passing by heparinized surfaces. r

Research paper thumbnail of Title: Apparatus and Method for Simulating in vivo Conditions while Seeding and Culturing Three-Dimensional Tissue Constructs

Research paper thumbnail of Blood-biomaterial interactions in a flow system in the presence of bacteria: Effect of protein adsorption

Journal of Biomedical Materials Research, 1995

An in vitro continuous flow system with whole human blood was used to study blood–biomaterial int... more An in vitro continuous flow system with whole human blood was used to study blood–biomaterial interactions on a base polyurethane and three modified surfaces in the presence and absence of circulating Staphyloccus epidermidis. We hypothesized that the composition of the protein layer adsorbed on the surface of the biomaterial would influence the response of blood components and bacteria. We examined the test surfaces for adsorption of nine plasma proteins and adsorption profiles differed on the four surfaces. The positively charged surface, UC, adsorbed significantly higher amounts of fibronectin (P < .01), von Willbrand factor (P < .01), and fibrinogen (P < .05) than the other materials. As a consequence of increased adsorption of these adhesive proteins, the adhesion of platelets and bacteria was greater on UC than on any other surface. On the base polyurethane, BC, and the negatively charged surface, UA, protein adsorption was low, and these materials were largely free of adherent blood cells and bacteria. The heparinized surface, UH, adsorbed higher quantities (P < .01) of Hageman factor and high molecular weight kininogen relative to the other surfaces. Platelet adhesion, and surface coagulation were prominent on UC, and may have contributed to increased bacterial adhesion on this surface. In the presence of circulating bacteria, adsorption was generally lower than in the absence of bacteria. The pattern of protein adsorption was largely unaffected by the strain of circulating bacteria, but platelet responses (adhesion and activation) were greater in the presence of slime-producing S. epidermidis as compared to the non-slime-producing strain, suggesting that slime may have a direct activating effect on platelets. © 1995 John Wiley & Sons, Inc.

Research paper thumbnail of Human monocyte/macrophage adhesion and cytokine production on surface-modified poly(tetrafluoroethylene/hexafluoropropylene) polymers with and without protein preadsorption

Journal of Biomedical Materials Research, 1995

To study surface property-dependent human monocyte adhesion and cytokine (IL-1β, IL-6, TNF-α) pro... more To study surface property-dependent human monocyte adhesion and cytokine (IL-1β, IL-6, TNF-α) production, poly(tetrafluoroethylene/hexafluoropropylene) (FEP) polymer was modified to exhibit neutral, anionic, or cationic properties by incorporating amide (CONH2) and/or carboxyl (COOH) or aminoethyl amide [CONH(CH2CH2NH)nCH2CH2NH2] groups on the surface. Monocyte adhesion on surface-modified FEP polymers and cytokines released by monocytes/macrophages (MC/MO) into the culture medium were compared to control tissue culture polystyrene (TCPS) at days 1 and 8. On day 1, the neutral surface FEP polymer with incorporated amide (NH2) groups showed the greatest inhibition of adhesion, 89% (P ≤ .01), and cytokine production (IL-1β with 58%, IL-6 with 70%, and TNF-α with 39%) compared to control TCPS. In contrast, the highly cationic [CONH(CH2CH2NH)nCH2CH2NH2] surface did not show significant (P > .01) inhibition of monocyte adhesion and cytokine production. When fibrinogen or IgG was preadsorbed to the surface, the inhibitory effects of the neutral surface FEP polymer on monocyte adhesion and cytokine production were not altered. In addition, other surface-modified FEP polymers showed similar inhibition of monocyte adhesion and cytokine production compared to TCPS. Specifically, as the incorporation of carboxyl (COOH) group content increased on FEP polymer surfaces, monocyte adhesion and cytokine production were also increased on day 1 with IgG preadsorption. On day 8, all surface-modified FEP polymers showed significant (P < .01) inhibition of monocyte adhesion when fibrinogen or IgG was preadsorbed. However, without protein (fibrinogen or IgG) preadsorption, monocyte adhesion was not significantly inhibited compared to control TCPS. In addition, cytokine production detected by ELISAs on day 8 showed no detectable levels of IL-1β and significantly decreased levels of IL-6 compared to day 1 for all tested polymers, with or without protein preadsorpion. Interestingly, the level of TNF-α production on day 8 remained high although not as high as on day 1. Based on these results, we suggest that FEP polymers with neutral hydrophilic surface properties may adhere and activate the least number of monocytes, which are important mediators of biocompatibility. © 1995 John Wiley & Sons, Inc.

Research paper thumbnail of In vivo behavior of epoxy-crosslinked porcine heart valve cusps and walls

Journal of Biomedical Materials Research, 2000

Calcification limits the long-term durability of xenograft glutaraldehyde-crosslinked heart valve... more Calcification limits the long-term durability of xenograft glutaraldehyde-crosslinked heart valves. In this study, epoxy-crosslinked porcine aortic valve tissue was evaluated after subcutaneous implantation in weanling rats. Non-crosslinked valves and valves crosslinked with glutaraldehyde or carbodiimide functioned as control. Epoxy-crosslinked valves had somewhat lower shrinkage temperatures than the crosslinked controls, and within the series also some macroscopic and microscopic differences were obvious. After 8 weeks implantation, cusps from non-crosslinked valves were not retrieved. The matching walls were more degraded than the epoxy- and control-crosslinked walls. This was observed from the higher cellular ingrowth with fibroblasts, macrophages, and giant cells. Furthermore, non-crosslinked walls showed highest numbers of lymphocytes, which were most obvious in the capsules. Epoxy- and control-crosslinked cusps and walls induced lower reactions. Calcification, measured by von Kossa-staining and by Ca-analysis, was always observed. Crosslinked cusps calcified more than walls. Of all wall samples, the non-crosslinked walls showed the highest calcification. It is concluded that epoxy-crosslinked valve tissue induced a foreign body and calcification reaction similar to the two crosslinked controls. Therefore, epoxy-crosslinking does not represent a solution for the calcification problem of heart valve bioprostheses.

Research paper thumbnail of Heparin coating of tantalum coronary stents reduces surface thrombin generation but not factor IXa generation

Blood Coagulation & Fibrinolysis, 1998

In the present study we used an in-vitro technique to examine initiation and propagation of blood... more In the present study we used an in-vitro technique to examine initiation and propagation of blood coagulation at the surface of tantalum coronary stents exposed to flowing platelet-rich and platelet-free plasma. The time course of factor IXa production at the surface of the stent was not influenced by platelets. In spite of a significant factor IXa production, no thrombin activity was detected when the tantalum stent was exposed to platelet-free plasma; only when the stent was exposed to platelet-rich plasma was extensive thrombin production observed. These findings indicate that tantalum triggers blood coagulation, but that (adherent) platelets are essential for thrombin generation. Heparin-coated tantalum stents exposed to flowing platelet-rich plasma showed that factor IXa generation was slightly reduced compared with the bare stent. However, the heparin coating drastically delayed the onset of thrombin generation and largely reduced the steady-state production of thrombin. We found a clear relationship between the antithrombin binding capacity and the antithrombogenic potential of the heparin-coated stents. The mode of action of immobilized heparin is thought to abrogate thrombin generation by inhibiting thrombin-dependent positive feedback reactions at the surface of the coronary stent.

Research paper thumbnail of Animal study on surface-modified defibrillator systems: Indications for enhanced infection resistance

Journal of Biomedical Materials Research, 2001

One of the most important problems with ICD systems is infection. The aim of this study was an in... more One of the most important problems with ICD systems is infection. The aim of this study was an in vivo evaluation of the efficacy of defibrillator systems in terms of infection resistance. The polyurethane leads were coupled with heparin and loaded with the antibiotic gentamicin, while the PGs were modified to release gentamicin. Group I was comprised of 10 pigs implanted with either a standard or a modified system for 2 weeks; group II was implanted during 4 weeks. The lead was inserted into the heart wall via the jugular vein. The other end was subcutaneously tunneled to the armpit where the PG was positioned. A cocktail of Staphylococcus aureus and epidermidis was injected at the site of the PG. Evaluation was performed macroscopically, by taking bacterial swabs during explantation and by microscopic processing. The results showed that 3 out of 5 modified defibrillator-systems in group I and 1–2 out of 5 in group II were judged as noninfected, whereas all standard systems were infected. Infection rates of the remaining modified defibrillators showed variances, as found with the standards, from slight to moderate to high, to even high/severe in group II (1× standard and 1× modified). With the modified systems, this may be related to production of humoral factors by an intensified early tissue reaction, as indicated by a swelling at day 6 at the site of the PG. When infected, whether or not modified, usually only Staphylococcus aureus was present. Spreading of infection seemed to occur by inoculation via blood, for example, based on the observation that group II in general showed an increase in infected fibrotic overgrowth in the heart, while infectious problems were low in the jugular vein. It is concluded that the modification at short term shows enhanced infection resistance. An increased infection rate already at 4 weeks, however, indicates that the modification may not hold in the long run. Special attention is needed concerning the more intense early tissue reaction. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 384–392, 2001

Research paper thumbnail of The kinetics of 1,4‐butanediol diglycidyl ether crosslinking of dermal sheep collagen

Journal of Biomedical Materials Research, 2000

Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified wi... more Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified with glycidyl isopropyl ether (PGE). The reduction in amine groups as a function of time was followed to study the overall reaction kinetics of collagen with either BDDGE or PGE. Linearization of the experimental data resulted in a reaction order of 2 with respect to the amine groups in the PGE masking reaction, whereas a reaction order of 2.5 was obtained in the BDDGE crosslinking reaction. The reaction orders were independent of the pH in the range of 8.5-10.5 and the reagent concentration (1-4 wt %). The reaction order with respect to epoxide groups was equal to 1 for both reagents. As expected, the reaction rate was favored by a higher reagent concentration and a higher solution pH. Because the BDDGE crosslinking reaction occurs via two distinct reaction steps, the content of pendant epoxide groups in the collagen matrix was determined by treating the collagen with either O-phosphoryl ethanolamine or lysine methyl ester. The increase in either phosphor or primary amine groups was related to the content of pendant groups. Crosslinking at pH 9.0 resulted in a low reaction rate but in a high crosslink efficacy, especially after prolonged reaction times. A maximum concentration of pendant epoxide groups was detected after 50 h. Reaction at pH 10.0 was faster, but a lower crosslinking efficacy was obtained. At pH 10.0, the ratio between pendant epoxide groups and crosslinks was almost equal to 1 during the course of the crosslinking reaction.

Research paper thumbnail of Animal study on surface‐modified defibrillator systems: Indications for enhanced infection resistance

Journal of Biomedical Materials Research, 2001

One of the most important problems with ICD systems is infection. The aim of this study was an in... more One of the most important problems with ICD systems is infection. The aim of this study was an in vivo evaluation of the efficacy of defibrillator systems in terms of infection resistance. The polyurethane leads were coupled with heparin and loaded with the antibiotic gentamicin, while the PGs were modified to release gentamicin. Group I was comprised of 10 pigs implanted with either a standard or a modified system for 2 weeks; group II was implanted during 4 weeks. The lead was inserted into the heart wall via the jugular vein. The other end was subcutaneously tunneled to the armpit where the PG was positioned. A cocktail of Staphylococcus aureus and epidermidis was injected at the site of the PG. Evaluation was performed macroscopically, by taking bacterial swabs during explantation and by microscopic processing. The results showed that 3 out of 5 modified defibrillator-systems in group I and 1–2 out of 5 in group II were judged as noninfected, whereas all standard systems were infected. Infection rates of the remaining modified defibrillators showed variances, as found with the standards, from slight to moderate to high, to even high/severe in group II (1× standard and 1× modified). With the modified systems, this may be related to production of humoral factors by an intensified early tissue reaction, as indicated by a swelling at day 6 at the site of the PG. When infected, whether or not modified, usually only Staphylococcus aureus was present. Spreading of infection seemed to occur by inoculation via blood, for example, based on the observation that group II in general showed an increase in infected fibrotic overgrowth in the heart, while infectious problems were low in the jugular vein. It is concluded that the modification at short term shows enhanced infection resistance. An increased infection rate already at 4 weeks, however, indicates that the modification may not hold in the long run. Special attention is needed concerning the more intense early tissue reaction. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 384–392, 2001

Research paper thumbnail of Factors and Interactions Affecting the Performance of Polyurethane Elastomers in Medical Devices

Journal of Biomaterials Applications, 1988

Polyurethanes offer the greatest versatility in compositions and properties of any family of poly... more Polyurethanes offer the greatest versatility in compositions and properties of any family of polymers. For implantable medical devices, a few specific elastomeric polyurethane compositions have demonstrated a combination of toughness, durability, biocompatibility and biostability not achieved by any other available material. Because of the complex behavior of implantable polyurethanes in the body environment, designers and fabricators of polyurethane-containing devices must pay particular attention to the choice of composition and design of components. Subsequent treatment during qualification, fabrication, sterilization, storage, implantation, in vivo operation and explantation also determine the performance and provide the means for assessing the efficacy of the polyurethane in the implanted device.

Research paper thumbnail of Simplified procedure for forming polymer-based ion-selective electrodes

Analytical Chemistry, 1985

Research paper thumbnail of Antithrombin activity of surface-bound heparin studied under flow conditions

Journal of Biomedical Materials Research, 1995

Polyacrylamide-grafted polyetherurethane sheets were modified by end-point and multipoint attachm... more Polyacrylamide-grafted polyetherurethane sheets were modified by end-point and multipoint attachment of heparin. The surface-bound heparin was firmly attached. No release of heparin activity could be detected when the surface was rinsed at a wall shear rate of 2000 s−1. Uptake of antithrombin and thrombin inactivation were investigated under well-defined flow conditions by the use of a spinning device with an attached disk-shaped heparinized surface. It is demonstrated that the rate of thrombin inactivation at the antithrombin-heparin surface equals the maximal rate of transport of thrombin toward the surface when the surface coverage of antithrombin exceeds 10 pmol/cm2. This result indicates that a higher intrinsic catalytic efficiency of a surface does not necessarily result in a higher antithrombin activity. We varied the heparin content of the surfaces between 0 and 35 μg/cm2 by increasing the number of functional groups to which heparin could be covalently attached. The uptake of antithrombin increased with the heparin content of the surface, but the stoichiometry decreased from 2 to 0.5 pmol antithrombin/μg heparin. Apparently, antithrombin could not bind to heparins buried in the poly(acrylamide) layer. The rate of thrombin inactivation at surfaces with low heparin content (2 μg/cm2) fells below the transport limit of thrombin and became proportional with the heparin content of the surface. Although the contribution of surface-bound heparin to the neutralization of fluidphase thrombin was found to be negligible compared with the effect of fluid-phase antithrombin at physiologic relevant concentrations, these heparinized surfaces markedly delayed the onset of thrombin generation in platelet-rich plasma. It is concluded that the inhibition of locally produced thrombin might contribute to the thromboresistance of the heparinized surface. © 1995 John Wiley & Sons, Inc.

Research paper thumbnail of The kinetics of 1,4-butanediol diglycidyl ether crosslinking of dermal sheep collagen

Journal of Biomedical Materials Research, 2000

Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified wi... more Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified with glycidyl isopropyl ether (PGE). The reduction in amine groups as a function of time was followed to study the overall reaction kinetics of collagen with either BDDGE or PGE. Linearization of the experimental data resulted in a reaction order of 2 with respect to the amine groups in the PGE masking reaction, whereas a reaction order of 2.5 was obtained in the BDDGE crosslinking reaction. The reaction orders were independent of the pH in the range of 8.5-10.5 and the reagent concentration (1-4 wt %). The reaction order with respect to epoxide groups was equal to 1 for both reagents. As expected, the reaction rate was favored by a higher reagent concentration and a higher solution pH. Because the BDDGE crosslinking reaction occurs via two distinct reaction steps, the content of pendant epoxide groups in the collagen matrix was determined by treating the collagen with either O-phosphoryl ethanolamine or lysine methyl ester. The increase in either phosphor or primary amine groups was related to the content of pendant groups. Crosslinking at pH 9.0 resulted in a low reaction rate but in a high crosslink efficacy, especially after prolonged reaction times. A maximum concentration of pendant epoxide groups was detected after 50 h. Reaction at pH 10.0 was faster, but a lower crosslinking efficacy was obtained. At pH 10.0, the ratio between pendant epoxide groups and crosslinks was almost equal to 1 during the course of the crosslinking reaction.

Research paper thumbnail of Ventricular Sourcing An Alternative to Traditional Coronary Artery Bypass

Research paper thumbnail of Direct Left Ventricle-to-Coronary Artery Stent Restores Perfusion to Chronic Ischemic Swine Myocardium

Heart Surgery Forum, 2006

Direct left ventricle (LV)-to-coronary artery shunts (VSTENT) have been proposed as an alternativ... more Direct left ventricle (LV)-to-coronary artery shunts (VSTENT) have been proposed as an alternative means of myocardial revascularization. The goal of this study was to examine quantitative changes in myocardial perfusion and possible mechanisms of revascularization with an LV-to-coronary shunt. Ameroid occluders were implanted on the proximal left anterior descending coronary artery (LAD) of 6 pigs to create chronic ischemia. Four weeks later, a VSTENT was placed to directly connect the distal LAD with the LV chamber. Animals survived for an additional 3 weeks and received periodic bromodeoxyuridine (BrdU) injections to identify dividing cells to identify and quantify angiogenesis. Regional myocardial perfusion (RMP) was measured with color microspheres under adenosine vasodilatory stress before and 3 weeks after VSTENT implantation. Vascularity was assessed histologically by an overall vascularity index and a growth index reflecting the density of BrdU-positive vascular cells. Three weeks after VSTENT placement, RMP improved from 38.4% +/- 19.6% of non-ischemic flow to 86.8% +/- 13.7% in treated animals (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; .05). This benefit was accompanied by histological evidence of increased vascularity and vascular proliferation. Four of 5 animals had patent and functional devices at the end of the study. Chronic VSTENT placement improves RMP and may promote arterial remodeling in chronically ischemic porcine myocardium.

Research paper thumbnail of the Treatment of Coronary Artery Disease Intramyocardial Left Ventricle-to-Coronary Artery Stent: A Novel Approach for

Research paper thumbnail of Intramyocardial Left Ventricle-to-Coronary Artery Stent: A Novel Approach for the Treatment of Coronary Artery Disease

Annals of Thoracic Surgery, 2005

Background. The direct intramyocardial left ventricleto-coronary artery stent may provide an opti... more Background. The direct intramyocardial left ventricleto-coronary artery stent may provide an optional minimally invasive technique for coronary artery bypass graft surgery. We seek to test whether blood flow and regional myocardial function improve with this stent in totally ischemic myocardium.

Research paper thumbnail of Direct Left Ventricle to Great Cardiac Vein Retroperfusion: A Novel Alternative to Myocardial Revascularization

Heart Surgery Forum, 2006

As the number of patients with diffuse coronary artery disease continues to grow, there is renewe... more As the number of patients with diffuse coronary artery disease continues to grow, there is renewed interest in alternative methods of perfusing the ischemic myocardium. We tested the feasibility of myocardial retroperfusion via a direct left ventricle-to-great cardiac vein (LV-GCV) conduit to support regional contractility in this setting. LV-GCV flow was established using an extracorporeal circuit in 5 dogs. Left ventricle (LV) pressure, aortic pressure, regional myocardial segment length, and circuit blood flow were measured prior to left anterior descending coronary artery (LAD) ligation, following LAD ligation, and after LV-GCV circuit placement. To eliminate backward flow during diastole, an in-line flow regulator was placed. Regional myocardial function was quantified by pressure-segment length loop area divided by end-diastolic segment length (PSLA/EDSL). LAD ligation reduced PSLA/EDSL from 10.0 +/- 1.2 mm Hg mm to 1.6 +/- 0.3 mm Hg mm (P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; .05). With LV-GCV retroperfusion, mean peak systolic flow was +152 +/- 14 mL/min, mean peak diastolic flow was -39 +/- 11 mL/min, and net mean flow was +36 +/- 13 mL/min. Regional function recovered to approximately 39% of baseline (3.9 +/- 0.4 mm Hg mm, P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; .05). Upon elimination of backflow, mean flow increased to +41 +/- 12 mL/min and regional function recovered even further to approximately 47% of baseline (4.6 +/- 0.7 mm Hg mm, P &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt; .05). A LV-GCV circuit can significantly restore regional function to the acutely ischemic myocardium. An inline valve that eliminates backward diastolic flow improves regional function even further. This approach may provide an effective therapy for diffuse coronary disease not amenable to traditional revascularization strategies.

Research paper thumbnail of Correlation of the surface chemistries of polymer bioactive coatings, with their biological performances

Journal of Materials Science-materials in Medicine, 1995

Surface analysis techniques have been used to characterize heparin-containing bioactive coatings.... more Surface analysis techniques have been used to characterize heparin-containing bioactive coatings. The relationship between uncoated polymer, intermediate coupling and final layer surface chemistry upon the overall quality of the coating system has been investigated. The results present data from ToFSIMS, XPS and bioactivity in terms of thrombin deactivation as measured using chromogenic assay technique on heparin-based coatings on polymer surfaces including LDPE and PVC. The effect of pretreatment of uncoated polymer surfaces has been investigated where a number of effects critical to coating performance have been identified. Studies of the intermediate coupling regime show how the first and final stages of coupling are the most critical. Finally it is shown how the integrity, mean thickness and chemical state of the heparin final layer can be measured using a combination of ToFSIMS and XPS.

Research paper thumbnail of Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies

Biomaterials, 2003

Collagen was covalently linked to the surface of Titanium (Ti) by a surface modification process ... more Collagen was covalently linked to the surface of Titanium (Ti) by a surface modification process involving deposition of a thin film from hydrocarbon plasma followed by acrylic acid grafting. The composition and properties of surface-modified Ti were investigated by a number of surface sensitive techniques: XPS, ATR-IR, atomic force microscopy and AFM force-separation curves. In vitro tests were performed to check samples cytotoxicity and the behavior of osteoblast-like SaOS-2 cells. In vivo experiments involved 12 weeks implants in rabbit muscle as general biocompatibility assessment and 1-month implants in rabbit bone to evaluate the effect of surface modification on osteointegration rate. Results of XPS measurements show how surface chemistry is affected throughout each step of the surface modification process, finally leading to a complete and homogeneous collagen overlayer on top of the Ti samples. AFM data clearly display the modification of the surface topography and of the surface area of the samples as a consequence of the grafting and coupling process. AFM force-distance curves show that the interfacial structure responds by shrinking or swelling to variations of ionic force of the surrounding aqueous environment, suggesting that the aqueous interface of the biochemically modified Ti samples has enhanced degrees of freedom as compared to the inorganic surface of plain Ti. As to biological evaluations, the biochemically modified Ti samples are safe in terms of cytotoxicity and in vivo biocompatibility assessment. SaOS-2 cells growth rate is lower on collagen modified surfaces, and no significant difference is detected in terms of alkaline phosphatase production as compared to control Ti. Importantly, implants in rabbit femur show a significant increase of bone growth and bone-to-implant contact in the case of the collagen modified samples, confirming that biochemical modifications of Ti surface can enhance the rate of bone healing as compared to plain Ti. r

Research paper thumbnail of Thrombogenicity of polysaccharide-coated surfaces

Biomaterials, 2003

Heparinization of artificial surfaces has been proven to reduce the intrinsic thrombogenicity of ... more Heparinization of artificial surfaces has been proven to reduce the intrinsic thrombogenicity of such surfaces. The mechanism by which immobilized heparin reduces thrombogenicity is not completely understood. In the present study heparin-, alginic acid-and chondroitin-6-sulphate-coated surfaces were examined for protein adsorption, platelet adhesion and thrombin generation. The protein-binding capacity from solutions of purified proteins was significantly higher for heparin-coated surfaces when compared with alginic acid-and chondroitin sulphate-coated surfaces. Yet, when the surfaces were exposed to flowing plasma, only the heparinized surface adsorbed significant amounts of antithrombin. None of the surfaces adsorbed fibrinogen under these conditions, and as a result no platelets adhered from flowing whole blood. Our results indicate that protein adsorption and platelet adhesion from anticoagulated blood cannot be used to assess the thrombogenicity of (coated) artificial surfaces. Indeed, the thrombin generation potentials of the different surfaces varied remarkable: while non-coated surface readily produced thrombin, alginic acidand chondroitin sulphate-coated surfaces showed a marked reduction and virtually no thrombin was generated in flowing whole blood passing by heparinized surfaces. r

Research paper thumbnail of Title: Apparatus and Method for Simulating in vivo Conditions while Seeding and Culturing Three-Dimensional Tissue Constructs

Research paper thumbnail of Blood-biomaterial interactions in a flow system in the presence of bacteria: Effect of protein adsorption

Journal of Biomedical Materials Research, 1995

An in vitro continuous flow system with whole human blood was used to study blood–biomaterial int... more An in vitro continuous flow system with whole human blood was used to study blood–biomaterial interactions on a base polyurethane and three modified surfaces in the presence and absence of circulating Staphyloccus epidermidis. We hypothesized that the composition of the protein layer adsorbed on the surface of the biomaterial would influence the response of blood components and bacteria. We examined the test surfaces for adsorption of nine plasma proteins and adsorption profiles differed on the four surfaces. The positively charged surface, UC, adsorbed significantly higher amounts of fibronectin (P < .01), von Willbrand factor (P < .01), and fibrinogen (P < .05) than the other materials. As a consequence of increased adsorption of these adhesive proteins, the adhesion of platelets and bacteria was greater on UC than on any other surface. On the base polyurethane, BC, and the negatively charged surface, UA, protein adsorption was low, and these materials were largely free of adherent blood cells and bacteria. The heparinized surface, UH, adsorbed higher quantities (P < .01) of Hageman factor and high molecular weight kininogen relative to the other surfaces. Platelet adhesion, and surface coagulation were prominent on UC, and may have contributed to increased bacterial adhesion on this surface. In the presence of circulating bacteria, adsorption was generally lower than in the absence of bacteria. The pattern of protein adsorption was largely unaffected by the strain of circulating bacteria, but platelet responses (adhesion and activation) were greater in the presence of slime-producing S. epidermidis as compared to the non-slime-producing strain, suggesting that slime may have a direct activating effect on platelets. © 1995 John Wiley & Sons, Inc.

Research paper thumbnail of Human monocyte/macrophage adhesion and cytokine production on surface-modified poly(tetrafluoroethylene/hexafluoropropylene) polymers with and without protein preadsorption

Journal of Biomedical Materials Research, 1995

To study surface property-dependent human monocyte adhesion and cytokine (IL-1β, IL-6, TNF-α) pro... more To study surface property-dependent human monocyte adhesion and cytokine (IL-1β, IL-6, TNF-α) production, poly(tetrafluoroethylene/hexafluoropropylene) (FEP) polymer was modified to exhibit neutral, anionic, or cationic properties by incorporating amide (CONH2) and/or carboxyl (COOH) or aminoethyl amide [CONH(CH2CH2NH)nCH2CH2NH2] groups on the surface. Monocyte adhesion on surface-modified FEP polymers and cytokines released by monocytes/macrophages (MC/MO) into the culture medium were compared to control tissue culture polystyrene (TCPS) at days 1 and 8. On day 1, the neutral surface FEP polymer with incorporated amide (NH2) groups showed the greatest inhibition of adhesion, 89% (P ≤ .01), and cytokine production (IL-1β with 58%, IL-6 with 70%, and TNF-α with 39%) compared to control TCPS. In contrast, the highly cationic [CONH(CH2CH2NH)nCH2CH2NH2] surface did not show significant (P > .01) inhibition of monocyte adhesion and cytokine production. When fibrinogen or IgG was preadsorbed to the surface, the inhibitory effects of the neutral surface FEP polymer on monocyte adhesion and cytokine production were not altered. In addition, other surface-modified FEP polymers showed similar inhibition of monocyte adhesion and cytokine production compared to TCPS. Specifically, as the incorporation of carboxyl (COOH) group content increased on FEP polymer surfaces, monocyte adhesion and cytokine production were also increased on day 1 with IgG preadsorption. On day 8, all surface-modified FEP polymers showed significant (P < .01) inhibition of monocyte adhesion when fibrinogen or IgG was preadsorbed. However, without protein (fibrinogen or IgG) preadsorption, monocyte adhesion was not significantly inhibited compared to control TCPS. In addition, cytokine production detected by ELISAs on day 8 showed no detectable levels of IL-1β and significantly decreased levels of IL-6 compared to day 1 for all tested polymers, with or without protein preadsorpion. Interestingly, the level of TNF-α production on day 8 remained high although not as high as on day 1. Based on these results, we suggest that FEP polymers with neutral hydrophilic surface properties may adhere and activate the least number of monocytes, which are important mediators of biocompatibility. © 1995 John Wiley & Sons, Inc.