Paul Andreassen - Academia.edu (original) (raw)

Papers by Paul Andreassen

Research paper thumbnail of Fanconi anemia proteins and endogenous stresses

Mutation Research: Fundamental And Molecular Mechanisms Of Mutagenesis, Jul 1, 2009

Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA inter... more Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are an excellent tool for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins. We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.

Research paper thumbnail of Coordination of the recruitment of the FANCD2 and PALB2 Fanconi anemia proteins by an ubiquitin signaling network

Chromosoma, Jun 8, 2016

Fanconi anemia (FA) is a chromosome instability syndrome and the 19 identified FA proteins are or... more Fanconi anemia (FA) is a chromosome instability syndrome and the 19 identified FA proteins are organized into two main arms which are thought to function at distinct steps in the repair of DNA interstrand crosslinks (ICLs). These two arms include the upstream FA pathway, which culminates in the monoubiquitination of FANCD2 and FANCI, and downstream breast cancer (BRCA) associated proteins that interact in protein complexes. How, and whether, these two groups of FA proteins are integrated is unclear. Here, we show that FANCD2 and PALB2, as indicators of the upstream and downstream arms, respectively, colocalize independently of each other in response to DNA damage induced by mitomycin C (MMC). We also show that ubiquitin chains are induced by MMC and colocalize with both FANCD2 and PALB2. Our finding that the RNF8 E3 ligase has a role in recruiting both FANCD2 and PALB2 also provides support for the hypothesis that the two branches of the FA-BRCA pathway are coordinated by ubiquitin signaling. Interestingly, we find that the RNF8 partner MDC1, as well as the ubiquitin binding protein, RAP80, specifically recruit PALB2, while a different ubiquitin binding protein, FAAP20, functions only in the recruitment of FANCD2. Thus, FANCD2 and PALB2 are not recruited in a single linear pathway, rather we define how their localization is coordinated and integrated by a network of ubiquitin-related proteins. We propose that such regulation may enable upstream and downstream FA proteins to act at distinct steps in the repair of ICLs.

Research paper thumbnail of FANCJ/BRIP1 recruitment and regulation of FANCD2 in DNA damage responses

Chromosoma, Jul 31, 2010

FANCJ/BRIP1 encodes a helicase that has been implicated in the maintenance of genomic stability. ... more FANCJ/BRIP1 encodes a helicase that has been implicated in the maintenance of genomic stability. Here, to better understand FANCJ function in DNA damage responses, we have examined the regulation of its cellular localization. FANCJ nuclear foci assemble spontaneously during S phase and are induced by various stresses. FANCJ foci colocalize with the replication fork following treatment with hydroxyurea, but not spontaneously. Using FANCJ mutants, we find that FANCJ helicase activity and the capacity to bind BRCA1 are both involved in FANCJ recruitment. Given similarities to the recruitment of another Fanconi anemia protein, FANCD2, we tested for colocalization of FANCJ and FANCD2. Importantly, these proteins show substantial colocalization, and FANCJ promotes the assembly of FANCD2 nuclear foci. This process is linked to the proper localization of FANCJ itself since both FANCJ and FANCD2 nuclear foci are compromised by FANCJ mutants that abrogate its helicase activity or interaction with BRCA1. Our results suggest that FANCJ is recruited in response to replication stress and that FANCJ/ BRIP1 may serve to link FANCD2 to BRCA1.

Research paper thumbnail of PALB2: The hub of a network of tumor suppressors involved in DNA damage responses

Biochimica Et Biophysica Acta - Reviews On Cancer, Aug 1, 2014

PALB2 was first identified as a partner of BRCA2 that mediates its recruitment to sites of DNA da... more PALB2 was first identified as a partner of BRCA2 that mediates its recruitment to sites of DNA damage. PALB2 was subsequently found as a tumor suppressor gene. Inherited heterozygosity for this gene is associated with an increased risk of cancer of the breast and other sites. Additionally, biallelic mutation of PALB2 is linked to Fanconi anemia, which also has an increased risk of developing malignant disease. Recent work has identified numerous interactions of PALB2, suggesting that it functions in a network of proteins encoded by tumor suppressors. Notably, many of these tumor suppressors are related to the cellular response to DNA damage. The recruitment of PALB2 to DNA double-strand breaks at the head of this network is via a ubiquitin-dependent signaling pathway that involves the RAP80, Abraxas and BRCA1 tumor suppressors. Next, PALB2 interacts with BRCA2, which is a tumor suppressor, and with the RAD51 recombinase. These interactions promote DNA repair by homologous recombination (HR). More recently, PALB2 has been found to bind the RAD51 paralog, RAD51C, as well as the translesion polymerase pol η, both of which are tumor suppressors with functions in HR. Further, an interaction with MRG15, which is related to chromatin regulation, may facilitate DNA repair in damaged chromatin. Finally, PALB2 interacts with KEAP1, a regulator of the response to oxidative stress. The PALB2 network appears to mediate the maintenance of genome stability, may explain the association of many of the corresponding genes with similar spectra of tumors, and could present novel therapeutic opportunities.

Research paper thumbnail of The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters

Blood, May 3, 2012

Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi... more Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi anemia (FA), a genetic disorder associated with BM failure and cancer. Here we show that major antioxidant defense genes are downregulated in FA patients, and that gene down-regulation is selectively associated with increased oxidative DNA damage in the promoters of the antioxidant defense genes. Assessment of promoter activity and DNA damage repair kinetics shows that increased initial damage, rather than a reduced repair rate, contributes to the augmented oxidative DNA damage. Mechanistically, FA proteins act in concert with the chromatin-remodeling factor BRG1 to protect the promoters of antioxidant defense genes from oxidative damage. Specifically, BRG1 binds to the promoters of the antioxidant defense genes at steady state. On challenge with oxida-tive stress, FA proteins are recruited to promoter DNA, which correlates with significant increase in the binding of BRG1 within promoter regions. In addition, oxidative stress-induced FANCD2 ubiquitination is required for the formation of a FA-BRG1-promoter complex. Taken together, these data identify a role for the FA pathway in cellular antioxidant defense. (Blood. 2012;119(18):4142-4151)

Research paper thumbnail of Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair

Oncogene, Oct 21, 2013

Heterozygous carriers of germ-line mutations in the BRCA2/FANCD1, PALB2/FANCN and RAD51C/FANCO DN... more Heterozygous carriers of germ-line mutations in the BRCA2/FANCD1, PALB2/FANCN and RAD51C/FANCO DNA repair genes have an increased lifetime risk of developing breast, ovarian and other cancers; bi-allelic mutations in these genes clinically manifest as Fanconi anemia (FA). Here, we demonstrate that RAD51C is part of a novel protein complex that contains PALB2 and BRCA2. Further, the PALB2 WD40 domain can directly and independently bind RAD51C and BRCA2. To understand the role of these homologous recombination (HR) proteins in DNA repair, we functionally characterize effects of missense mutants of the PALB2 WD40 domain that have been reported in breast cancer patients. In contrast to large truncations of PALB2, which display a complete loss of interaction, the L939W, T1030I and L1143P missense mutants/variants of the PALB2 WD40 domain are associated with altered patterns of direct binding to the RAD51C, RAD51 and BRCA2 HR proteins in biochemical assays. Further, the T1030I missense mutant is unstable, whereas the L939W and L1143P proteins are stable but partially disrupt the PALB2-RAD51C-BRCA2 complex in cells. Functionally, the L939W and L1143P mutants display a decreased capacity for DNA double-strand break-induced HR and an increased cellular sensitivity to ionizing radiation. As further evidence for the functional importance of the HR complex, RAD51C mutants that are associated with cancer susceptibility and FA also display decreased complex formation with PALB2. Together, our results suggest that three different cancer susceptibility and FA proteins function in a DNA repair pathway based upon the PALB2 WD40 domain binding to RAD51C and BRCA2.

Research paper thumbnail of DNA repair-related functional assays for the classification of BRCA1 and BRCA2 variants: a critical review and needs assessment

Journal of Medical Genetics, Sep 2, 2017

Research paper thumbnail of Manipulating DNA damage-response signaling for the treatment of immune-mediated diseases

Proceedings of the National Academy of Sciences of the United States of America, May 22, 2017

Research paper thumbnail of Functional Interaction of Monoubiquitinated FANCD2 and BRCA2/FANCD1 in Chromatin

Molecular and Cellular Biology, Jul 1, 2004

Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least 11 com... more Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least 11 complementation groups (A, B, C, D1, D2, E, F, G, I, J, and L), and eight FA genes have been cloned. The FANCD1 gene is identical to the breast cancer susceptibility gene, BRCA2. The FA proteins cooperate in a common pathway, but the function of BRCA2/FANCD1 in this pathway remains unknown. Here we show that monoubiquitination of FANCD2, which is activated by DNA damage, is required for targeting of FANCD2 to chromatin, where it interacts with BRCA2. FANCD2-Ub then promotes BRCA2 loading into a chromatin complex. FANCD2 ؊/؊ cells are deficient in the assembly of DNA damage-inducible BRCA2 foci and in chromatin loading of BRCA2. Functional complementation with the FANCD2 cDNA restores BRCA2 foci and its chromatin loading following DNA damage. BRCA2 ؊/؊ cells expressing a carboxy-terminal truncated BRCA2 protein form IR-inducible BRCA2 and FANCD2 foci, but these foci fail to colocalize. Functional complementation of these cells with wild-type BRCA2 restores the interaction of BRCA2 and FANCD2. The C terminus of BRCA2 is therefore required for the functional interaction of BRCA2 and FANCD2 in chromatin. Taken together, our results demonstrate that monoubiquitination of FANCD2, which is regulated by the FA pathway, promotes BRCA2 loading into chromatin complexes. These complexes appear to be required for normal homology-directed DNA repair.

Research paper thumbnail of ATR couples FANCD2 monoubiquitination to the DNA-damage response

Genes & Development, Aug 15, 2004

Fanconi anemia (FA) is a multigenic autosomal recessive cancer susceptibility syndrome. The FA pa... more Fanconi anemia (FA) is a multigenic autosomal recessive cancer susceptibility syndrome. The FA pathway regulates the monoubiquitination of FANCD2 and the assembly of damage-associated FANCD2 nuclear foci. How FANCD2 monoubiquitination is coupled to the DNA-damage response has remained undetermined. Here, we demonstrate that the ATR checkpoint kinase and RPA1 are required for efficient FANCD2 monoubiquitination. Deficiency of ATR function, either in Seckel syndrome, which clinically resembles Fanconi anemia, or by siRNA silencing, results in the formation of radial chromosomes in response to the DNA cross-linker, mitomycin C (MMC), thus mimicking the chromosome instability of FA cells.

Research paper thumbnail of Genetics and women's health issues-The commitment of EMS to women scientists and gender-associated disease topics

Environmental and Molecular Mutagenesis, Aug 25, 2010

This manuscript presents an overview of a symposium held at the 2009 annual meeting of the Enviro... more This manuscript presents an overview of a symposium held at the 2009 annual meeting of the Environmental Mutagen Society (EMS) in St. Louis, MO. The symposium was sponsored by the Women in the Environmental Mutagen Society (WEMS) special interest group, and it covered current molecular genetics technologies and their impact on diagnosis and treatment of diseases that primarily or differentially affect women. Four speakers presented groundbreaking new information from such areas as cancer genetics, gene-environment interactions, epigenetics, DNA repair, and molecular epidemiology. Although cancer was a primary focus of the symposium, other health issues such as obesity and cardiovascular disease were addressed. The rapid evolution in genomic technologies discussed in this symposium should provide new tools to explore some of the critical questions raised by the research projects described in this article. This symposium demonstrates that EMS provides a forum for the presentation, discussion, and extension of the data generated by the investigators featured in this article and other researchers engaged in the study of the molecular mechanisms and gene-environment interactions that impact women's health.

Research paper thumbnail of Data from Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers

Purpose: Fanconi anemia is an inherited disorder associated with a constitutional defect in the F... more Purpose: Fanconi anemia is an inherited disorder associated with a constitutional defect in the Fanconi anemia DNA repair machinery that is essential for resolution of DNA interstrand crosslinks. Individuals with Fanconi anemia are predisposed to formation of head and neck squamous cell carcinomas (HNSCC) at a young age. Prognosis is poor, partly due to patient intolerance of chemotherapy and radiation requiring dose reduction, which may lead to early recurrence of disease. Experimental Design: Using HNSCC cell lines derived from the tumors of patients with Fanconi anemia, and murine HNSCC cell lines derived from the tumors of wild-type and Fancc À/À mice, we sought to define Fanconi anemia-dependent chemosensitivity and DNA repair characteristics. We utilized DNA repair reporter assays to explore the preference of Fanconi anemia HNSCC cells for non-homologous end joining (NHEJ). Results: Surprisingly, interstrand crosslinker (ICL) sensitivity was not necessarily Fanconi anemia-dependent in human or murine cell systems. Our results suggest that the increased Ku-dependent NHEJ that is expected in Fanconi anemia cells did not mediate relative ICL resistance. ICL exposure resulted in increased DNA damage sensing and repair by PARP in Fanconi anemia-deficient cells. Moreover, human and murine Fanconi anemia HNSCC cells were sensitive to PARP inhibition, and sensitivity of human cells was attenuated by Fanconi anemia gene complementation. Conclusions: The observed reliance upon PARP-mediated mechanisms reveals a means by which Fanconi anemia HNSCCs can acquire relative resistance to the ICL-based chemotherapy that is a foundation of HNSCC treatment, as well as a potential target for overcoming chemoresistance in the chemosensitive individual. Clin Cancer Res; 21(8); 1962-72. Ó2015 AACR.

Research paper thumbnail of Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene

PMC, Oct 1, 2016

Background-Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by ... more Background-Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by progressive bone marrow failure, congenital anomalies, and a predisposition to malignancies.

Research paper thumbnail of Genetic Testing to Guide Risk-Stratified Screens for Breast Cancer

Journal of Personalized Medicine, Mar 1, 2019

Breast cancer screening modalities and guidelines continue to evolve and are increasingly based o... more Breast cancer screening modalities and guidelines continue to evolve and are increasingly based on risk factors, including genetic risk and a personal or family history of cancer. Here, we review genetic testing of high-penetrance hereditary breast and ovarian cancer genes, including BRCA1 and BRCA2, for the purpose of identifying high-risk individuals who would benefit from earlier screening and more sensitive methods such as magnetic resonance imaging. We also consider risk-based screening in the general population, including whether every woman should be genetically tested for high-risk genes and the potential use of polygenic risk scores. In addition to enabling early detection, the results of genetic screens of breast cancer susceptibility genes can be utilized to guide decision-making about when to elect prophylactic surgeries that reduce cancer risk and the choice of therapeutic options. Variants of uncertain significance, especially missense variants, are being identified during panel testing for hereditary breast and ovarian cancer. A finding of a variant of uncertain significance does not provide a basis for increased cancer surveillance or prophylactic procedures. Given that variant classification is often challenging, we also consider the role of multifactorial statistical analyses by large consortia and functional tests for this purpose.

Research paper thumbnail of Neither p21WAF1 nor 14-3-3sigma prevents G2 progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21WAF1 induces stable G1 arrest in resulting tetraploid cells

Cancer research, Jan 15, 2001

p21WAF1 and 14-3-3sigma, which are both transcriptional products of p53, have been reported to pl... more p21WAF1 and 14-3-3sigma, which are both transcriptional products of p53, have been reported to play a role in the G2 DNA damage checkpoint in mammalian cells. Human colon carcinoma cells, isogenic except for the presence or absence of either p21WAF1 or 14-3-3sigma (T. A. Chan et al., Genes Dev., 14: 1584-1588, 2000), are useful models for analysis of the role of these proteins in checkpoint control. Here, we have examined mitotic behavior within a single cell cycle after DNA damage in these cell lines. Our results show that p21WAF1, but not 14-3-3sigma, imposes a significant G2 delay after DNA damage. After G2 delay, we found that all isogenic cells, including those competent for both p21WAF1 and 14-3-3sigma, adapt to the DNA damage checkpoint and progress into mitosis, where they undergo incomplete chromosome segregation and reenter G1 with a tetraploid DNA content. Strikingly, our results show that p21WAF1, but not 14-3-3sigma, activates a checkpoint in response to DNA damage that...

Research paper thumbnail of Fanconi Anemia Proteins, DNA Interstrand Crosslink Repair Pathways, and Cancer Therapy

Current Cancer Drug Targets, Feb 1, 2009

DNA interstrand crosslinkers, a chemically diverse group of compounds which also induce alkylatio... more DNA interstrand crosslinkers, a chemically diverse group of compounds which also induce alkylation of bases and DNA intrastrand crosslinks, are extensively utilized for cancer therapy. Understanding the cellular response to DNA damage induced by these agents is critical for more effective utilization of these compounds and for the identification of novel therapeutic targets. Importantly, the repair of DNA interstrand crosslinks (ICLs) involves many distinct DNA repair pathways, including nucleotide excision repair, translesion synthesis (TLS), and homologous recombination (HR). Additionally, proteins implicated in the pathophysiology of the multigenic disease Fanconi anemia (FA) have a role in the repair of ICLs that is not well understood. Cells from FA patients are hypersensitive to agents that induce ICLs, therefore FA proteins are potentially novel therapeutic targets. Here we will review current research directed at identifying FA genes and understanding the function of FA proteins in DNA damage responses. We will also examine interactions of FA proteins with other repair proteins and pathways, including signaling networks, which are potentially involved in ICL repair. Potential approaches to the modulation of FA protein function to enhance therapeutic outcome will be discussed. Also, mutation of many genes that encode proteins involved in ICL repair, including FA genes, increases susceptibility to cancer. A better understanding of these pathways is therefore critical for the design of individualized therapies tailored to the genetic profile of a particular malignancy. For this purpose, we will also review evidence for the association of mutation of FA genes with cancer in non-FA patients.

Research paper thumbnail of SETD2 mutations confer chemoresistance in acute myeloid leukemia partly through altered cell cycle checkpoints

Research paper thumbnail of Arrest of mammalian fibroblasts in G1 in response to actin inhibition is dependent on retinoblastoma pocket proteins but not on p53

Journal of Cell Biology, Apr 7, 2003

53 and the retinoblastoma (RB) pocket proteins are central to the control of progression through ... more 53 and the retinoblastoma (RB) pocket proteins are central to the control of progression through the G1 phase of the cell cycle. The RB pocket protein family is downstream of p53 and controls S-phase entry. Disruption of actin assembly arrests nontransformed mammalian fibroblasts in G1. We show that this arrest requires intact RB pocket protein function, but surprisingly does not require p53. Thus, mammalian fibroblasts with normal pocket protein function reversibly arrest in G1 on exposure to actin inhibitors regardless of their p53 status. By contrast, pocket protein triple knockout mouse embryo fibroblasts and T antigentransformed rat embryo fibroblasts lacking both p53 and p RB pocket protein function do not arrest in G1. Fibroblasts are very sensitive to actin inhibition in G1 and arrest at drug concentrations that do not affect cell adhesion or cell cleavage. Interestingly, G1 arrest is accompanied by inhibition of surface ruffling and by induction of NF2/merlin. The combination of failure of G1 control and of tetraploid checkpoint control can cause RB pocket protein-suppressed cells to rapidly become aneuploid and die after exposure to actin inhibitors, whereas pocket protein-competent cells are spared. Our results thus establish that RB pocket proteins can be uniquely targeted for tumor chemotherapy.

Research paper thumbnail of Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that<i>XRCC2</i>is a Fanconi anaemia gene

Journal of Medical Genetics, May 20, 2016

Background-Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by ... more Background-Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by progressive bone marrow failure, congenital anomalies, and a predisposition to malignancies.

Research paper thumbnail of Mitogen-activated protein kinase kinase activity is required for the G <sub>2</sub> /M transition of the cell cycle in mammalian fibroblasts

Proceedings of the National Academy of Sciences of the United States of America, Sep 28, 1999

Research paper thumbnail of Fanconi anemia proteins and endogenous stresses

Mutation Research: Fundamental And Molecular Mechanisms Of Mutagenesis, Jul 1, 2009

Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA inter... more Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are an excellent tool for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins. We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.

Research paper thumbnail of Coordination of the recruitment of the FANCD2 and PALB2 Fanconi anemia proteins by an ubiquitin signaling network

Chromosoma, Jun 8, 2016

Fanconi anemia (FA) is a chromosome instability syndrome and the 19 identified FA proteins are or... more Fanconi anemia (FA) is a chromosome instability syndrome and the 19 identified FA proteins are organized into two main arms which are thought to function at distinct steps in the repair of DNA interstrand crosslinks (ICLs). These two arms include the upstream FA pathway, which culminates in the monoubiquitination of FANCD2 and FANCI, and downstream breast cancer (BRCA) associated proteins that interact in protein complexes. How, and whether, these two groups of FA proteins are integrated is unclear. Here, we show that FANCD2 and PALB2, as indicators of the upstream and downstream arms, respectively, colocalize independently of each other in response to DNA damage induced by mitomycin C (MMC). We also show that ubiquitin chains are induced by MMC and colocalize with both FANCD2 and PALB2. Our finding that the RNF8 E3 ligase has a role in recruiting both FANCD2 and PALB2 also provides support for the hypothesis that the two branches of the FA-BRCA pathway are coordinated by ubiquitin signaling. Interestingly, we find that the RNF8 partner MDC1, as well as the ubiquitin binding protein, RAP80, specifically recruit PALB2, while a different ubiquitin binding protein, FAAP20, functions only in the recruitment of FANCD2. Thus, FANCD2 and PALB2 are not recruited in a single linear pathway, rather we define how their localization is coordinated and integrated by a network of ubiquitin-related proteins. We propose that such regulation may enable upstream and downstream FA proteins to act at distinct steps in the repair of ICLs.

Research paper thumbnail of FANCJ/BRIP1 recruitment and regulation of FANCD2 in DNA damage responses

Chromosoma, Jul 31, 2010

FANCJ/BRIP1 encodes a helicase that has been implicated in the maintenance of genomic stability. ... more FANCJ/BRIP1 encodes a helicase that has been implicated in the maintenance of genomic stability. Here, to better understand FANCJ function in DNA damage responses, we have examined the regulation of its cellular localization. FANCJ nuclear foci assemble spontaneously during S phase and are induced by various stresses. FANCJ foci colocalize with the replication fork following treatment with hydroxyurea, but not spontaneously. Using FANCJ mutants, we find that FANCJ helicase activity and the capacity to bind BRCA1 are both involved in FANCJ recruitment. Given similarities to the recruitment of another Fanconi anemia protein, FANCD2, we tested for colocalization of FANCJ and FANCD2. Importantly, these proteins show substantial colocalization, and FANCJ promotes the assembly of FANCD2 nuclear foci. This process is linked to the proper localization of FANCJ itself since both FANCJ and FANCD2 nuclear foci are compromised by FANCJ mutants that abrogate its helicase activity or interaction with BRCA1. Our results suggest that FANCJ is recruited in response to replication stress and that FANCJ/ BRIP1 may serve to link FANCD2 to BRCA1.

Research paper thumbnail of PALB2: The hub of a network of tumor suppressors involved in DNA damage responses

Biochimica Et Biophysica Acta - Reviews On Cancer, Aug 1, 2014

PALB2 was first identified as a partner of BRCA2 that mediates its recruitment to sites of DNA da... more PALB2 was first identified as a partner of BRCA2 that mediates its recruitment to sites of DNA damage. PALB2 was subsequently found as a tumor suppressor gene. Inherited heterozygosity for this gene is associated with an increased risk of cancer of the breast and other sites. Additionally, biallelic mutation of PALB2 is linked to Fanconi anemia, which also has an increased risk of developing malignant disease. Recent work has identified numerous interactions of PALB2, suggesting that it functions in a network of proteins encoded by tumor suppressors. Notably, many of these tumor suppressors are related to the cellular response to DNA damage. The recruitment of PALB2 to DNA double-strand breaks at the head of this network is via a ubiquitin-dependent signaling pathway that involves the RAP80, Abraxas and BRCA1 tumor suppressors. Next, PALB2 interacts with BRCA2, which is a tumor suppressor, and with the RAD51 recombinase. These interactions promote DNA repair by homologous recombination (HR). More recently, PALB2 has been found to bind the RAD51 paralog, RAD51C, as well as the translesion polymerase pol η, both of which are tumor suppressors with functions in HR. Further, an interaction with MRG15, which is related to chromatin regulation, may facilitate DNA repair in damaged chromatin. Finally, PALB2 interacts with KEAP1, a regulator of the response to oxidative stress. The PALB2 network appears to mediate the maintenance of genome stability, may explain the association of many of the corresponding genes with similar spectra of tumors, and could present novel therapeutic opportunities.

Research paper thumbnail of The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters

Blood, May 3, 2012

Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi... more Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi anemia (FA), a genetic disorder associated with BM failure and cancer. Here we show that major antioxidant defense genes are downregulated in FA patients, and that gene down-regulation is selectively associated with increased oxidative DNA damage in the promoters of the antioxidant defense genes. Assessment of promoter activity and DNA damage repair kinetics shows that increased initial damage, rather than a reduced repair rate, contributes to the augmented oxidative DNA damage. Mechanistically, FA proteins act in concert with the chromatin-remodeling factor BRG1 to protect the promoters of antioxidant defense genes from oxidative damage. Specifically, BRG1 binds to the promoters of the antioxidant defense genes at steady state. On challenge with oxida-tive stress, FA proteins are recruited to promoter DNA, which correlates with significant increase in the binding of BRG1 within promoter regions. In addition, oxidative stress-induced FANCD2 ubiquitination is required for the formation of a FA-BRG1-promoter complex. Taken together, these data identify a role for the FA pathway in cellular antioxidant defense. (Blood. 2012;119(18):4142-4151)

Research paper thumbnail of Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair

Oncogene, Oct 21, 2013

Heterozygous carriers of germ-line mutations in the BRCA2/FANCD1, PALB2/FANCN and RAD51C/FANCO DN... more Heterozygous carriers of germ-line mutations in the BRCA2/FANCD1, PALB2/FANCN and RAD51C/FANCO DNA repair genes have an increased lifetime risk of developing breast, ovarian and other cancers; bi-allelic mutations in these genes clinically manifest as Fanconi anemia (FA). Here, we demonstrate that RAD51C is part of a novel protein complex that contains PALB2 and BRCA2. Further, the PALB2 WD40 domain can directly and independently bind RAD51C and BRCA2. To understand the role of these homologous recombination (HR) proteins in DNA repair, we functionally characterize effects of missense mutants of the PALB2 WD40 domain that have been reported in breast cancer patients. In contrast to large truncations of PALB2, which display a complete loss of interaction, the L939W, T1030I and L1143P missense mutants/variants of the PALB2 WD40 domain are associated with altered patterns of direct binding to the RAD51C, RAD51 and BRCA2 HR proteins in biochemical assays. Further, the T1030I missense mutant is unstable, whereas the L939W and L1143P proteins are stable but partially disrupt the PALB2-RAD51C-BRCA2 complex in cells. Functionally, the L939W and L1143P mutants display a decreased capacity for DNA double-strand break-induced HR and an increased cellular sensitivity to ionizing radiation. As further evidence for the functional importance of the HR complex, RAD51C mutants that are associated with cancer susceptibility and FA also display decreased complex formation with PALB2. Together, our results suggest that three different cancer susceptibility and FA proteins function in a DNA repair pathway based upon the PALB2 WD40 domain binding to RAD51C and BRCA2.

Research paper thumbnail of DNA repair-related functional assays for the classification of BRCA1 and BRCA2 variants: a critical review and needs assessment

Journal of Medical Genetics, Sep 2, 2017

Research paper thumbnail of Manipulating DNA damage-response signaling for the treatment of immune-mediated diseases

Proceedings of the National Academy of Sciences of the United States of America, May 22, 2017

Research paper thumbnail of Functional Interaction of Monoubiquitinated FANCD2 and BRCA2/FANCD1 in Chromatin

Molecular and Cellular Biology, Jul 1, 2004

Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least 11 com... more Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least 11 complementation groups (A, B, C, D1, D2, E, F, G, I, J, and L), and eight FA genes have been cloned. The FANCD1 gene is identical to the breast cancer susceptibility gene, BRCA2. The FA proteins cooperate in a common pathway, but the function of BRCA2/FANCD1 in this pathway remains unknown. Here we show that monoubiquitination of FANCD2, which is activated by DNA damage, is required for targeting of FANCD2 to chromatin, where it interacts with BRCA2. FANCD2-Ub then promotes BRCA2 loading into a chromatin complex. FANCD2 ؊/؊ cells are deficient in the assembly of DNA damage-inducible BRCA2 foci and in chromatin loading of BRCA2. Functional complementation with the FANCD2 cDNA restores BRCA2 foci and its chromatin loading following DNA damage. BRCA2 ؊/؊ cells expressing a carboxy-terminal truncated BRCA2 protein form IR-inducible BRCA2 and FANCD2 foci, but these foci fail to colocalize. Functional complementation of these cells with wild-type BRCA2 restores the interaction of BRCA2 and FANCD2. The C terminus of BRCA2 is therefore required for the functional interaction of BRCA2 and FANCD2 in chromatin. Taken together, our results demonstrate that monoubiquitination of FANCD2, which is regulated by the FA pathway, promotes BRCA2 loading into chromatin complexes. These complexes appear to be required for normal homology-directed DNA repair.

Research paper thumbnail of ATR couples FANCD2 monoubiquitination to the DNA-damage response

Genes & Development, Aug 15, 2004

Fanconi anemia (FA) is a multigenic autosomal recessive cancer susceptibility syndrome. The FA pa... more Fanconi anemia (FA) is a multigenic autosomal recessive cancer susceptibility syndrome. The FA pathway regulates the monoubiquitination of FANCD2 and the assembly of damage-associated FANCD2 nuclear foci. How FANCD2 monoubiquitination is coupled to the DNA-damage response has remained undetermined. Here, we demonstrate that the ATR checkpoint kinase and RPA1 are required for efficient FANCD2 monoubiquitination. Deficiency of ATR function, either in Seckel syndrome, which clinically resembles Fanconi anemia, or by siRNA silencing, results in the formation of radial chromosomes in response to the DNA cross-linker, mitomycin C (MMC), thus mimicking the chromosome instability of FA cells.

Research paper thumbnail of Genetics and women's health issues-The commitment of EMS to women scientists and gender-associated disease topics

Environmental and Molecular Mutagenesis, Aug 25, 2010

This manuscript presents an overview of a symposium held at the 2009 annual meeting of the Enviro... more This manuscript presents an overview of a symposium held at the 2009 annual meeting of the Environmental Mutagen Society (EMS) in St. Louis, MO. The symposium was sponsored by the Women in the Environmental Mutagen Society (WEMS) special interest group, and it covered current molecular genetics technologies and their impact on diagnosis and treatment of diseases that primarily or differentially affect women. Four speakers presented groundbreaking new information from such areas as cancer genetics, gene-environment interactions, epigenetics, DNA repair, and molecular epidemiology. Although cancer was a primary focus of the symposium, other health issues such as obesity and cardiovascular disease were addressed. The rapid evolution in genomic technologies discussed in this symposium should provide new tools to explore some of the critical questions raised by the research projects described in this article. This symposium demonstrates that EMS provides a forum for the presentation, discussion, and extension of the data generated by the investigators featured in this article and other researchers engaged in the study of the molecular mechanisms and gene-environment interactions that impact women's health.

Research paper thumbnail of Data from Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers

Purpose: Fanconi anemia is an inherited disorder associated with a constitutional defect in the F... more Purpose: Fanconi anemia is an inherited disorder associated with a constitutional defect in the Fanconi anemia DNA repair machinery that is essential for resolution of DNA interstrand crosslinks. Individuals with Fanconi anemia are predisposed to formation of head and neck squamous cell carcinomas (HNSCC) at a young age. Prognosis is poor, partly due to patient intolerance of chemotherapy and radiation requiring dose reduction, which may lead to early recurrence of disease. Experimental Design: Using HNSCC cell lines derived from the tumors of patients with Fanconi anemia, and murine HNSCC cell lines derived from the tumors of wild-type and Fancc À/À mice, we sought to define Fanconi anemia-dependent chemosensitivity and DNA repair characteristics. We utilized DNA repair reporter assays to explore the preference of Fanconi anemia HNSCC cells for non-homologous end joining (NHEJ). Results: Surprisingly, interstrand crosslinker (ICL) sensitivity was not necessarily Fanconi anemia-dependent in human or murine cell systems. Our results suggest that the increased Ku-dependent NHEJ that is expected in Fanconi anemia cells did not mediate relative ICL resistance. ICL exposure resulted in increased DNA damage sensing and repair by PARP in Fanconi anemia-deficient cells. Moreover, human and murine Fanconi anemia HNSCC cells were sensitive to PARP inhibition, and sensitivity of human cells was attenuated by Fanconi anemia gene complementation. Conclusions: The observed reliance upon PARP-mediated mechanisms reveals a means by which Fanconi anemia HNSCCs can acquire relative resistance to the ICL-based chemotherapy that is a foundation of HNSCC treatment, as well as a potential target for overcoming chemoresistance in the chemosensitive individual. Clin Cancer Res; 21(8); 1962-72. Ó2015 AACR.

Research paper thumbnail of Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene

PMC, Oct 1, 2016

Background-Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by ... more Background-Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by progressive bone marrow failure, congenital anomalies, and a predisposition to malignancies.

Research paper thumbnail of Genetic Testing to Guide Risk-Stratified Screens for Breast Cancer

Journal of Personalized Medicine, Mar 1, 2019

Breast cancer screening modalities and guidelines continue to evolve and are increasingly based o... more Breast cancer screening modalities and guidelines continue to evolve and are increasingly based on risk factors, including genetic risk and a personal or family history of cancer. Here, we review genetic testing of high-penetrance hereditary breast and ovarian cancer genes, including BRCA1 and BRCA2, for the purpose of identifying high-risk individuals who would benefit from earlier screening and more sensitive methods such as magnetic resonance imaging. We also consider risk-based screening in the general population, including whether every woman should be genetically tested for high-risk genes and the potential use of polygenic risk scores. In addition to enabling early detection, the results of genetic screens of breast cancer susceptibility genes can be utilized to guide decision-making about when to elect prophylactic surgeries that reduce cancer risk and the choice of therapeutic options. Variants of uncertain significance, especially missense variants, are being identified during panel testing for hereditary breast and ovarian cancer. A finding of a variant of uncertain significance does not provide a basis for increased cancer surveillance or prophylactic procedures. Given that variant classification is often challenging, we also consider the role of multifactorial statistical analyses by large consortia and functional tests for this purpose.

Research paper thumbnail of Neither p21WAF1 nor 14-3-3sigma prevents G2 progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21WAF1 induces stable G1 arrest in resulting tetraploid cells

Cancer research, Jan 15, 2001

p21WAF1 and 14-3-3sigma, which are both transcriptional products of p53, have been reported to pl... more p21WAF1 and 14-3-3sigma, which are both transcriptional products of p53, have been reported to play a role in the G2 DNA damage checkpoint in mammalian cells. Human colon carcinoma cells, isogenic except for the presence or absence of either p21WAF1 or 14-3-3sigma (T. A. Chan et al., Genes Dev., 14: 1584-1588, 2000), are useful models for analysis of the role of these proteins in checkpoint control. Here, we have examined mitotic behavior within a single cell cycle after DNA damage in these cell lines. Our results show that p21WAF1, but not 14-3-3sigma, imposes a significant G2 delay after DNA damage. After G2 delay, we found that all isogenic cells, including those competent for both p21WAF1 and 14-3-3sigma, adapt to the DNA damage checkpoint and progress into mitosis, where they undergo incomplete chromosome segregation and reenter G1 with a tetraploid DNA content. Strikingly, our results show that p21WAF1, but not 14-3-3sigma, activates a checkpoint in response to DNA damage that...

Research paper thumbnail of Fanconi Anemia Proteins, DNA Interstrand Crosslink Repair Pathways, and Cancer Therapy

Current Cancer Drug Targets, Feb 1, 2009

DNA interstrand crosslinkers, a chemically diverse group of compounds which also induce alkylatio... more DNA interstrand crosslinkers, a chemically diverse group of compounds which also induce alkylation of bases and DNA intrastrand crosslinks, are extensively utilized for cancer therapy. Understanding the cellular response to DNA damage induced by these agents is critical for more effective utilization of these compounds and for the identification of novel therapeutic targets. Importantly, the repair of DNA interstrand crosslinks (ICLs) involves many distinct DNA repair pathways, including nucleotide excision repair, translesion synthesis (TLS), and homologous recombination (HR). Additionally, proteins implicated in the pathophysiology of the multigenic disease Fanconi anemia (FA) have a role in the repair of ICLs that is not well understood. Cells from FA patients are hypersensitive to agents that induce ICLs, therefore FA proteins are potentially novel therapeutic targets. Here we will review current research directed at identifying FA genes and understanding the function of FA proteins in DNA damage responses. We will also examine interactions of FA proteins with other repair proteins and pathways, including signaling networks, which are potentially involved in ICL repair. Potential approaches to the modulation of FA protein function to enhance therapeutic outcome will be discussed. Also, mutation of many genes that encode proteins involved in ICL repair, including FA genes, increases susceptibility to cancer. A better understanding of these pathways is therefore critical for the design of individualized therapies tailored to the genetic profile of a particular malignancy. For this purpose, we will also review evidence for the association of mutation of FA genes with cancer in non-FA patients.

Research paper thumbnail of SETD2 mutations confer chemoresistance in acute myeloid leukemia partly through altered cell cycle checkpoints

Research paper thumbnail of Arrest of mammalian fibroblasts in G1 in response to actin inhibition is dependent on retinoblastoma pocket proteins but not on p53

Journal of Cell Biology, Apr 7, 2003

53 and the retinoblastoma (RB) pocket proteins are central to the control of progression through ... more 53 and the retinoblastoma (RB) pocket proteins are central to the control of progression through the G1 phase of the cell cycle. The RB pocket protein family is downstream of p53 and controls S-phase entry. Disruption of actin assembly arrests nontransformed mammalian fibroblasts in G1. We show that this arrest requires intact RB pocket protein function, but surprisingly does not require p53. Thus, mammalian fibroblasts with normal pocket protein function reversibly arrest in G1 on exposure to actin inhibitors regardless of their p53 status. By contrast, pocket protein triple knockout mouse embryo fibroblasts and T antigentransformed rat embryo fibroblasts lacking both p53 and p RB pocket protein function do not arrest in G1. Fibroblasts are very sensitive to actin inhibition in G1 and arrest at drug concentrations that do not affect cell adhesion or cell cleavage. Interestingly, G1 arrest is accompanied by inhibition of surface ruffling and by induction of NF2/merlin. The combination of failure of G1 control and of tetraploid checkpoint control can cause RB pocket protein-suppressed cells to rapidly become aneuploid and die after exposure to actin inhibitors, whereas pocket protein-competent cells are spared. Our results thus establish that RB pocket proteins can be uniquely targeted for tumor chemotherapy.

Research paper thumbnail of Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that<i>XRCC2</i>is a Fanconi anaemia gene

Journal of Medical Genetics, May 20, 2016

Background-Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by ... more Background-Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by progressive bone marrow failure, congenital anomalies, and a predisposition to malignancies.

Research paper thumbnail of Mitogen-activated protein kinase kinase activity is required for the G <sub>2</sub> /M transition of the cell cycle in mammalian fibroblasts

Proceedings of the National Academy of Sciences of the United States of America, Sep 28, 1999